Generalized Beam Theory for the analysis of thin-walled circular pipe members

• The detailed structural analysis of thin-walled circular pipe members often requires the use of a shell or solid-based finite element method. Although these methods provide a very good approximation of the deformations, they require a higher degree of discretization which causes high computational costs. On the other hand, the analysis of thin-walled circular pipe members based on classical beamThe detailed structural analysis of thin-walled circular pipe members often requires the use of a shell or solid-based finite element method. Although these methods provide a very good approximation of the deformations, they require a higher degree of discretization which causes high computational costs. On the other hand, the analysis of thin-walled circular pipe members based on classical beam theories is easy to implement and needs much less computation time, however, they are limited in their ability to approximate the deformations as they cannot consider the deformation of the cross-section. This dissertation focuses on the study of the Generalized Beam Theory (GBT) which is both accurate and efficient in analyzing thin-walled members. This theory is based on the separation of variables in which the displacement field is expressed as a combination of predetermined deformation modes related to the cross-section, and unknown amplitude functions defined on the beam's longitudinal axis. Although the GBT was initially developed for long straight members, through the consideration of complementary deformation modes, which amend the null transverse and shear membrane strain assumptions of the classical GBT, problems involving short members, pipe bends, and geometrical nonlinearity can also be analyzed using GBT. In this dissertation, the GBT formulation for the analysis of these problems is developed and the application and capabilities of the method are illustrated using several numerical examples. Furthermore, the displacement and stress field results of these examples are verified using an equivalent refined shell-based finite element model. The developed static and dynamic GBT formulations for curved thin-walled circular pipes are based on the linear kinematic description of the curved shell theory. In these formulations, the complex problem in pipe bends due to the strong coupling effect of the longitudinal bending, warping and the cross-sectional ovalization is handled precisely through the derivation of the coupling tensors between the considered GBT deformation modes. Similarly, the geometrically nonlinear GBT analysis is formulated for thin-walled circular pipes based on the nonlinear membrane kinematic equations. Here, the initial linear and quadratic stress and displacement tangent stiffness matrices are built using the third and fourth-order GBT deformation mode coupling tensors. Longitudinally, the formulation of the coupled GBT element stiffness and mass matrices are presented using a beam-based finite element formulation. Furthermore, the formulated GBT elements are tested for shear and membrane locking problems and the limitations of the formulations regarding the membrane locking problem are discussed.
• Eine detaillierte Strukturanalyse dünnwandiger, kreisförmiger Rohrelemente erfordert oft die Verwendung von Schalenelementen in der Finite Elemente Methode. Diese Methode ermöglicht eine sehr gute Approximation des Verformungszustandes, erfordert jedoch einen hohen Grad der Diskretisierung, welcher wiederum einen hohen Rechenaufwand verursacht. Eine alternative Methode hierzu basiert aufEine detaillierte Strukturanalyse dünnwandiger, kreisförmiger Rohrelemente erfordert oft die Verwendung von Schalenelementen in der Finite Elemente Methode. Diese Methode ermöglicht eine sehr gute Approximation des Verformungszustandes, erfordert jedoch einen hohen Grad der Diskretisierung, welcher wiederum einen hohen Rechenaufwand verursacht. Eine alternative Methode hierzu basiert auf klassischen Balkentheorien, welche eine einfache Modellierung ermöglichen und wesentlich geringeren Rechenaufwand erfordern. Diese weisen jedoch Einschränkungen bei der Approximation von Verformungen auf, da Querschnittsverformungen nicht berücksichtigt werden können. Schwerpunkt dieser Dissertation ist eine Untersuchung der Verallgemeinerten Technischen Biegetheorie (VTB), die sowohl eine genaue als auch eine effiziente Analyse von dünnwandigen Tragwerkselementen ermöglicht. Diese Theorie basiert auf einer Trennung der Variablen, in der das Verschiebungsfeld als eine Kombination von vorbestimmten Verformungsmoden der Querschnitts und unbekannten Amplitudenfunktionen in Längsrichtung ausgedrückt wird. Obwohl die VTB ursprünglich für lange, gerade Elemente entwickelt wurde, können durch die Berücksichtigung komplementärer Verformungsmoden, welche die Null-Annahmen der klassischen VTB für Quer- und Schubmembrandehnung abändern, Probleme mit kurzen Elementen, Rohrbögen und geometrischer Nichtlinearität analysiert werden. In dieser Dissertation wird die VTB-Formulierung für die Analyse dieser Probleme entwickelt. Die Anwendung und Möglichkeiten der Methode werden anhand mehrerer numerischer Beispiele veranschaulicht, deren Verschiebungs- und Spannungsfeldanalysen anhand eines äquivalenten, verfeinerten, schalenbasierten Finite-Elemente-Modells verifiziert werden. Die entwickelten statischen und dynamischen VTB-Formulierungen für Rohrbogenelemente basieren auf der linearen kinematischen Beschreibung der Theorie gekrümmter Schalen. In diesen Formulierungen wird das komplexe Problem in Rohrbögen aufgrund des starken Kopplungseffekts der Längsbiegung, der Verwölbung und der Querschnittsovalisierung durch die Herleitung der Kopplungstensoren zwischen den betrachteten VTB-Verformungsmoden präzise behandelt. In ähnlicher Weise wird die geometrisch nichtlineare VTB-Analyse für gerade Rohrelemente auf der Grundlage der nichtlinearen kinematischen Membrangleichungen formuliert. Die anfänglichen linearen und quadratischen Spannungs- und Verschiebungs-Tangentensteifigkeitsmatrizen werden dabei unter Verwendung der VTB-Kopplungstensoren dritter und vierter Ordnung aufgebaut. In Längsrichtung wird die Formulierung der gekoppelten VTB-Element-Steifigkeits- und Massenmatrizen unter Verwendung einer balkenbasierten Finite-Elemente Formulierung dargestellt. Weiterhin werden die VTB-Elemente auf Schub- und Membran-Locking-Probleme getestet und die Einschränkungen der Formulierungen bezüglich des Membran-Locking-Problems diskutiert.