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Abstract
The detailed structural analysis of thin-walled circular pipe members often requires the use of a shell or
solid-based finite element method. Although these methods provide a very good approximation of the
deformations, they require a higher degree of discretization which causes high computational costs. On
the other hand, the analysis of thin-walled circular pipe members based on classical beam theories is
easy to implement and needs much less computation time, however, they are limited in their ability to
approximate the deformations as they cannot consider the deformation of the cross-section.

This dissertation focuses on the study of the Generalized Beam Theory (GBT) which is both accurate
and efficient in analyzing thin-walled members. This theory is based on the separation of variables in
which the displacement field is expressed as a combination of predetermined deformation modes related
to the cross-section, and unknown amplitude functions defined on the beam’s longitudinal axis. Although
the GBT was initially developed for long straight members, through the consideration of complementary
deformation modes, which amend the null transverse and shear membrane strain assumptions of the
classical GBT, problems involving short members, pipe bends, and geometrical nonlinearity can also
be analyzed using GBT. In this dissertation, the GBT formulation for the analysis of these problems
is developed and the application and capabilities of the method are illustrated using several numerical
examples. Furthermore, the displacement and stress field results of these examples are verified using an
equivalent refined shell-based finite element model.

The developed static and dynamic GBT formulations for curved thin-walled circular pipes are based on
the linear kinematic description of the curved shell theory. In these formulations, the complex problem in
pipe bends due to the strong coupling effect of the longitudinal bending, warping and the cross-sectional
ovalization is handled precisely through the derivation of the coupling tensors between the considered
GBT deformation modes. Similarly, the geometrically nonlinear GBT analysis is formulated for thin-
walled circular pipes based on the nonlinear membrane kinematic equations. Here, the initial linear and
quadratic stress and displacement tangent stiffness matrices are built using the third and fourth-order
GBT deformation mode coupling tensors.

Longitudinally, the formulation of the coupled GBT element stiffness and mass matrices are presented
using a beam-based finite element formulation. Furthermore, the formulated GBT elements are tested for
shear and membrane locking problems and the limitations of the formulations regarding the membrane
locking problem are discussed.
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Kurzfassung
Eine detaillierte Strukturanalyse dünnwandiger, kreisförmiger Rohrelemente erfordert oft die Verwen-
dung von Schalenelementen in der Finite Elemente Methode. Diese Methode ermöglicht eine sehr
gute Approximation des Verformungszustandes, erfordert jedoch einen hohen Grad der Diskretisierung,
welcher wiederum einen hohen Rechenaufwand verursacht. Eine alternative Methode hierzu basiert
auf klassischen Balkentheorien, welche eine einfache Modellierung ermöglichen und wesentlich gerin-
geren Rechenaufwand erfordern. Diese weisen jedoch Einschränkungen bei der Approximation von
Verformungen auf, da Querschnittsverformungen nicht berücksichtigt werden können.

Schwerpunkt dieser Dissertation ist eine Untersuchung der Verallgemeinerten Technischen Biegetheorie
(VTB), die sowohl eine genaue als auch eine effiziente Analyse von dünnwandigen Tragwerkselementen
ermöglicht. Diese Theorie basiert auf einer Trennung der Variablen, in der das Verschiebungsfeld als
eine Kombination von vorbestimmten Verformungsmoden der Querschnitts und unbekannten Ampli-
tudenfunktionen in Längsrichtung ausgedrückt wird. Obwohl die VTB ursprünglich für lange, gerade
Elemente entwickelt wurde, können durch die Berücksichtigung komplementärer Verformungsmoden,
welche die Null-Annahmen der klassischen VTB für Quer- und Schubmembrandehnung abändern, Prob-
leme mit kurzen Elementen, Rohrbögen und geometrischer Nichtlinearität analysiert werden. In dieser
Dissertation wird die VTB-Formulierung für die Analyse dieser Probleme entwickelt. Die Anwendung
und Möglichkeiten der Methode werden anhand mehrerer numerischer Beispiele veranschaulicht, deren
Verschiebungs- und Spannungsfeldanalysen anhand eines äquivalenten, verfeinerten, schalenbasierten
Finite-Elemente-Modells verifiziert werden.

Die entwickelten statischen und dynamischen VTB-Formulierungen für Rohrbogenelemente basieren auf
der linearen kinematischen Beschreibung der Theorie gekrümmter Schalen. In diesen Formulierun-
gen wird das komplexe Problem in Rohrbögen aufgrund des starken Kopplungseffekts der Längs-
biegung, der Verwölbung und der Querschnittsovalisierung durch die Herleitung der Kopplungsten-
soren zwischen den betrachteten VTB-Verformungsmoden präzise behandelt. In ähnlicher Weise wird
die geometrisch nichtlineare VTB-Analyse für gerade Rohrelemente auf der Grundlage der nichtlin-
earen kinematischen Membrangleichungen formuliert. Die anfänglichen linearen und quadratischen
Spannungs- und Verschiebungs-Tangentensteifigkeitsmatrizen werden dabei unter Verwendung der VTB-
Kopplungstensoren dritter und vierter Ordnung aufgebaut.

In Längsrichtung wird die Formulierung der gekoppelten VTB-Element-Steifigkeits- und Massenmatrizen
unter Verwendung einer balkenbasierten Finite-Elemente Formulierung dargestellt. Weiterhin werden
die VTB-Elemente auf Schub- und Membran-Locking-Probleme getestet und die Einschränkungen der
Formulierungen bezüglich des Membran-Locking-Problems diskutiert.
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Chapter 1

Introduction

Thin-walled circular pipe members are widely applied in structures such as pipeline systems, air and
space crafts, nuclear and fusion reactors, wind turbine towers and industrial plants. The preference of
using circular pipes in these structures comes partly from the fact that they have a high strength-to-weight
ratio and partly because they can be easily manufactured. For example, cold-formed steel circular pipes
are produced by folding and welding a metal sheet. In structures, thin-walled circular pipe members can
be subjected to axial and transverse loading, external and internal pressure, torsion, or a combination of
these loads. Unlike solid section members, the load carrying capacity of thin-walled slender members
is highly dependent on the change in shape of the cross-section. For instance, an increase in the cross-
sectional ovalization of a thin-walled circular pipe member during bending will lead to a gradual loss of
the bending stiffness. This complex structural behavior of thin-walled members requires the development
of a more robust and accurate mathematical model.

The detailed analysis of thin-walled members by means of a numerical shell-based Finite Element
Method (FEM) [17, 180] can approximate the displacement and stress fields in thin-walled members
accurately. However, the large number of Degrees of Freedom (DoF) needed in this method results in
high computational costs. Furthermore, the 3D shell finite element model generation process is usually
tiresome and time consuming.

On the other hand, classical beam theories like Euler-Bernoulli and Timoshenko [164] are easy to
implement and need much less computation time but cannot be used to analyze thin-walled members
since they do not consider cross-sectional distortion and warping. The first beam theory to consider
non-uniform out-of-plane warping of thin-walled beam cross-sections was introduced by Vlasov [169].
In this theory the warping displacement field and its corresponding stress field component named as Bi-
moment are considered in addition to a uniform axial extension, major and minor axis bending. Although
this theory is a major improvement compared to the classical beam theories, it still fails to provide a full
mechanical description of thin-walled beams since it does not consider in-plane distortion.

So far, two numerical methods can be mentioned which can accurately and efficiently analyze thin-
walled members. The first one, Finite Strip Method (FSM), can be considered as a special form of the
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finite element procedure in which the unnecessary and extravagant analysis in FEM is simplified for
structures having regular geometric plans and boundary conditions in order to reduce the computation
effort [37, 140]. In this method, the member is discretized into rectangular strips which calls for the
use of simple interpolation polynomials in one direction and continuously differentiable smooth series
functions in the other direction, thus effectively reducing the dimension of the problem.

The second method, the Generalized Beam Theory (GBT), can be regarded as an extension of the Vlasov
thin-walled beam theory to include cross-sectional distortions. This theory was first proposed by Richard
Schardt in 1966 [128, 137] for the analysis of prismatic and circular thin-walled members. In GBT, the
displacement fields are described using the separation of variables principle [86], which leads to two
analysis steps involving the cross-section and the longitudinal direction of the thin-walled member. In the
cross-sectional analysis, the cross-sectional deformation is decomposed into the basic beam, distortional,
local, and other modes. For prismatic thin-walled members, the decomposition of the cross-sectional
deformation is tedious since it requires solving a quadratic eigenvalue problem [8, 77], whereas the cross-
sectional deformation modes for thin-walled circular pipes can be simply expressed in a Fourier-Series
[131]. Once, the deformation modes are determined from the cross-sectional analysis, the longitudinal
direction analysis is carried out by multiplying the modes with an approximated longitudinal amplitude
shape function leading to a conventional beam finite element analysis. Further description of the theory
is given later in section 1.2.

In this dissertation, the generalized beam theory is studied due to its outstanding computational efficiency
and potential to comprehensively describe the displacement and stress fields of thin-walled members.
Here, the linear GBT formulation for thin-walled circular pipes is extended concerning static and dynamic
analyses of pipe bends and geometrically nonlinear analysis of straight pipes.

1.1 Motivation

The motivation to search and develop an efficient numerical method to analyze thin-walled circular pipes
stems from two research projects carried out at the Institute of Structural Mechanics (ISM), Bauhaus-
Universität Weimar.

In the first project, the demolition of guyed tubular masts was studied to ensure safe demolition. The
demolition of guyed masts is usually carried out by cutting down some of the supporting guy cables using
an explosive in such a way that the mast can fall into the desired direction. Without the cable supports,
guyed tubular masts are extremely slender structures which are susceptible to local buckling due to a
bending moment generated by inertia forces during the falling process. For example, in the demolition
overlay Figure 1.1a the tubular mast buckled in an early phase of falling causing the upper part of the
mast to fold back instead of falling like a tree straight into the originally planned direction.

The risk of undesirable demolition outcome due to the uncertainty in the failure mechanism can be
mitigated by using numerical simulations [99, 100, 166] and optimization techniques to design a controlled
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(a) Actual demolition in 2013 (b) FEM simulation using LS-DYNA

Figure 1.1: Demolition of the 236 m high Wiederau J1 guyed antenna mast.

detonation setup. Using shell-based explicit finite element analysis [175] implemented in LS-DYNA [72],
this complex dynamic process involving large deformations and rotations can be simulated with reasonable
accuracy as shown in Figure 1.1b. However, such a simulation has a high computational cost due to
the very small time step requirement of the method in relation to the relatively longer duration of the
falling. Additionally, this simulation needs to be computed multiple times with updated parameters for
optimization of the detonation setup. Detailed findings of this research project can be found in [69].

In the second project, pipelines exposed to seismic risks were studied to mitigate possible damages.
During an earthquake, pipelines crossing a fault may be deformed due to the relative movement of
supports to both sides of the fault. For example, in the case of the Trans-Alaska Pipeline System (TAPS)
the 2002 Denali earthquake caused a right lateral horizontal slip of about 5.50 m at the pipeline fault
crossing putting the pipeline under compression [75, 157]. Figure 1.2 shows the lateral movement and
bowing of the 579 m long pipeline segment with the sliding crossbeam supports in response to the
fault slip, which acts to compress the pipeline. The simulation of such displacements, which can cause
cross-sectional ovalization and local stress, requires a numerical method that appropriately describes
the pipe, the support system, their interaction and failure modes characterized by local cross-sectional
deformations. A structural analysis, which can fully evaluate these transversal and local effects, based on
shell or solid finite-element models would require a significant amount of time to be modeled and solved,
provided that it is even possible, considering the whole length of the pipeline at the fault crossing. Detail
findings of this research project can be found in [70, 71].

As an alternative modeling technique, GBT can be used to easily model the structures in these projects
using beam-finite elements considering all transversal and local effects. The motivation to study GBT
is due to its remarkable computational efficiency, besides the scientific curiosity of understanding this

3



1.2: Introduction to classical GBT

(a) Before fault slip (b) After fault slip

Figure 1.2: TAPS at the fault crossing [75].

elegant and rather difficult theory.

Although the classical GBT formulation is not sufficient to model these complex engineering problems,
the novel GBT formulations developed in this dissertation regarding the linear static and dynamic analyses
of pipe bends and the geometrically nonlinear analysis of straight pipes in combination with recent studies
at the ISM such as the formulation of GBT for semi-continued arbitrary support condition [29] and the
coupled shell-GBT formulation [30] will make it possible to effectively analyze these and other structures
involving thin-walled circular pipes.

1.2 Introduction to classical GBT

GBT is a beam theory specially formulated for thin-walled members with the capacity of determining
the member cross-sectional deformation through the linear combination of a set of predetermined cross-
sectional deformation modes which satisfy a number of orthogonality conditions. This modal nature
of GBT has significant advantages in terms of its computational efficiency and the clear structure of
the solution obtained [35]. In circular pipe members, once the cross-sectional deformation modes are
defined by Fourier-Series [131], the amplitude of these orthogonal deformation modes along the length
of the member is determined from the member equilibrium equations and boundary conditions. Figure
1.3 shows the linear combinations of the orthogonal deformation modes with their respective amplitude
function 𝑘𝑉 .

The credit to this innovative approach for solving structural problems involving thin-walled members goes
to Richard Schardt and his co-workers at the Technical University of Darmstadt. The first publications
by Schardt [128, 137] present already all basic aspects of GBT and discuss the first order analysis of
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Deformed cross-section

=

𝑎𝑉 × mode 𝑎

+

𝑏𝑉 × mode 𝑏

+

𝑐𝑉 × mode 𝑐

+ . . .

Figure 1.3: Deformed configuration of a thin-walled circular pipe cross-section and its corresponding
GBT modal decomposition.

thin-walled members with open prismatic and cylindrical cross-sections. This initial work of Schardt
follows Vlasov’s [169] strategy of reducing complex two-dimensional problems of shell theory to one-
dimensional problems through the definition of displacement fields as a sum of the product of pre-selected
functions dependent only on the member’s transversal perimeter to the unknown amplitude functions in
the longitudinal direction. Furthermore, in the GBT formulation, Schardt adopted the Vlasov assumptions
of negligible transverse elongation and in-plane shear distortions along the thin-walled member. However,
the sum of four displacement components, which are the generalized longitudinal displacements, angles
of rotation in major and minor axis and the generalized warping, used by Vlasov to define a displacement
field of any point on the member is extended by Schardt in his generalized beam theory to include
distortional, local and other cross-sectional deformations.

Since Schardt’s first publications in the 1960s, for the next four decades, he and his co-workers published
a number of papers and dissertations in German. These studies were mainly devoted to the develop-
ment of GBT procedures used for the stability analysis of plates and open sections [135], the analysis
of longitudinally curved thin-walled members with an open cross-section [167], the analysis of open
cylindrical shells with arbitrary boundary conditions [123], the dynamic analysis of prismatic members
[122, 134] and in relation to second-order analysis [102, 129, 138]. Based on these and several more
studies, Schardt published his first book [131] titled Verallgemeinerte Technische Biegetheorie: Lineare
Probleme in 1989, which is still the main reference in the GBT research community. A complete list of
GBT publications by Schardt and his research group can be found on the website http://www.vtb.info/.

In 1983, Schard’s first GBT related article [130] in English lead to the introduction of the theory to Davies,
who then developed the exact finite element solution for the GBT’s governing differential equation[38].
In the 1990s, more studies using GBT started to be published in English concerning the stability analysis
of thin-walled members by Schardt [132, 133], Davies [39, 40] and Leach [87] which have played a major
role in introducing GBT to the international research community.

In the last two decades, GBT has been studied by several research groups around the world making it one
of the most evolved methods specialized in the analysis of thin-walled structures. Out of these groups, a
Portuguese team lead by Camotim and Silvestre at the Technical University of Lisbon conducted the most
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extensive studies focusing mainly on thin-walled prismatic cross-sections. In fact, out of the hundreds
of research papers published by this group (http://www.civil.ist.utl.pt/gbt/) only five were devoted to
thin-walled circular pipe sections. So far, the development of linear and nonlinear GBT formulations
in circular pipe sections lags behind the development of prismatic sections, hence the need for this
dissertation. A detailed literature review of recent GBT developments is given in section 2.1.

1.3 Objective, methodology and contributions

The main objective of this dissertation is the study and development of a GBT to analyze thin-walled
circular pipes problems involving the coupling of GBT deformation modes. Such problems occur in
pipes with a curved axis or when considering different types of nonlinearities.

In addition to the classical GBT deformation modes, shear deformations modes, which have recently
been proposed by Muresa et al. [103], are considered in this study to eliminate Vlasov’s assumptions of
null transverse elongation and in-plane shear distortions. The resulting GBT differential equations, due
to change in the kinematic equation or equilibrium conditions of each problem, are solved using a beam-
based finite element method. Throughout this dissertation, several numerical examples are presented for
the purpose of validation. These examples are compared with the solution of shell-based finite element
models in both displacement and stress fields.

The main contributions of this dissertation based on the above objectives are listed as follows:

• Linear static formulation of GBT for pipe bends: based on the Sanders thin shell theory [125] the
thin-walled circular pipe formulation of Schardt [131] is extended for the analyses of pipe bends.
This formulation shows explicitly the complex coupling effect of longitudinal bending, warping, and
cross-sectional ovalization through the GBT deformation modes coupled in the element stiffness
matrix. Here, the formulated curved GBT element is investigated for the membrane locking
problem.

• Dynamic analysis of pipe bends: continuing on the linear static formulation of GBT for pipe bends,
the GBT dynamic formulation is developed for truncated and closed toroidal shells. Here, the
coupled GBT element mass matrix is derived from the variation of the kinetic energy.

• Geometrically nonlinear GBT formulation of straight circular pipes: considering the nonlinear
membrane kinematic equations based on Green-Lagrange strain definition the initial linear and
quadratic stress and displacement tangent stiffness matrices are formulated using third and fourth-
order GBT deformation mode coupling tensors. These tensors can predetermine the type of
deformation modes needed for the nonlinear analysis based on the applied loading conditions. In
the numerical examples, the complex nonlinear relationship between transverse loading and the
cross-sectional ovalization is demonstrated for small to moderate displacements.
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• Stress field: throughout the dissertation the stress resultants for the membrane forces, the shear
forces, and the bending moment are derived and used to validate the numerical examples in addition
to the displacement field.

Furthermore, in this study a Python-based [168] GBT-software is developed from the ground up since
the currently available GBT-software, which are VtbGui (http://www.ib-haakh.de/vtb) and GBTUL [20],
are exclusively created for prismatic sections. The numerical examples presented in this dissertation are
computed using this software developed in Python.

1.4 Structure of the dissertation

The dissertation is structured in the following five chapters:

In Chapter 2, the recent studies and advancements of GBT are reviewed and the complete state-of-the-
art linear GBT formulation for thin-walled circular pipe section is presented, which is the basis of all
subsequent formulations in the next chapters. Here, the computational efficiency of GBT is shown in
comparison to shell-based FEM.

Chapter 3 presents the linear GBT formulation for thin-walled pipes with circular axis. The formulation
shows the variational formulations of internal and external energies, change in GBT deformation modes
due to the effect of the toroidal to cross-sectional radius ratio, deformation modes couplings and the
implementation of FEM. In this chapter, for the purpose of validation and to illustrate capabilities of
the developed GBT formulation, a set of numerical examples with in-plane, out-of-plane, and pressure
loading conditions involving a combination and coupling of bending, warping, torsional, axisymmetric,
and local deformations are presented.

In Chapter 4, extending the static linear GBT formulations presented in Chapter 3 the dynamic analysis is
developed for curved thin-walled pipes. Here, the variation of the kinetic energy is presented to determine
the consistent element mass matrix of a curved GBT element which involves the coupling of certain types
of GBT deformation modes resembling that of the element stiffness matrix in Chapter 3. Furthermore,
numerical examples concerning the undamped free vibration analysis of truncated and closed toroidal
shells with different support conditions are provided.

Chapter 5 develops the geometrically nonlinear formulation of GBT based on a linear incremental iterative
procedure to approximate the nonlinear response of the thin-walled circular pipe members. Considering
the nonlinear membrane kinematic relations the initial linear and quadratic stress and displacement
tangent stiffness matrices are derived. At the end, two numerical examples are provided to analyze
the nonlinear relationship between transversal loading and the cross-sectional ovalization for small to
moderated displacements.

Finally, Chapter 6 summarizes the dissertation, discusses the limitations of the developed formulations,
and provides an outlook for further studies.
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Chapter 2

Fundamentals of
Generalized Beam Theory

This chapter discusses the basic principles of GBT concerning the analysis of thin-walled circular pipe
sections, which will be referred to in the next chapters. At first, a state-of-the-art review is given addressing
the recent formulations and applications of GBT in prismatic and circular thin-walled sections separately.

Next, the chapter presents a comprehensive first-order GBT formulation of circular hollow sections (CHS)
by improving the classical GBT formulation of Schardt [131] through the consideration of additional
torsional, axis-symmetric [143], transverse and in-plane shear deformation modes [103]. This formulation
starts from the general assumptions of GBT, followed by the derivation of the weak form of the differential
equilibrium equations based on the principle of virtual work, which is then solved by means of the finite
element method.

At the end, the formulated GBT element is verified and its computational efficiency is demonstrated by
comparing the results of a numerical example with a refined shell finite element model. Furthermore, the
GBT element is tested for a shear locking problem.

2.1 State of the art

Continuing on section 1.2, GBT studies in the past two decades are reviewed in this section.

One of the limitations of classical GBT is the null assumptions of transversal extension and in-plane
shear strain energies of the membrane behavior. Although certain thin-walled beam problems can be
addressed even with this limitation, a wide range of problems involving nonlinearities, short columns,
and longitudinally curved members cannot be analyzed correctly without lifting this limitation. The
need for additional deformation modes to amend the limitations related to null in-plane shear strain
assumption was first proposed by Silvestre and Camotim [146, 148] by introducing shear deformation
modes in addition to the conventional classical GBT deformation modes which were originally proposed
by Schardt [131, 145].
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2.1: State of the art

This first attempt to incorporate shear deformation effects for a buckling analysis of composite lipped
channel columns was later extended by Silva and Silvestre [141, 142, 150] to arbitrary branched cross-
sections and composite thin-walled members. Here, the incorporation of shear deformation modes was
done by defining additional Degrees of Freedom (DoF) associated with membrane shear arising solely
from the axial displacements 𝑢(𝑥, 𝜃). Therefore, these additional DoF do not have cross-sectional in-plane
displacements ( 𝑗𝑣(𝜃) = 𝑗𝑤(𝜃) = 0). In equation (2.1), the axial or longitudinal displacement is defined
by the sum of the orthogonal classical GBT deformation modes 𝑘𝑢(𝜃) and shear deformation modes
𝑗𝑢(𝜃) with their corresponding amplitude functions 𝑘𝑉(𝑥) and 𝑗𝑉̃(𝑥).

𝑢(𝑥, 𝜃) = 𝑘𝑢(𝜃) 𝑘𝑉,𝑥 (𝑥)︸           ︷︷           ︸
classical GBT

+ 𝑗𝑢(𝜃) 𝑗𝑉̃(𝑥)︸        ︷︷        ︸
shear component

(2.1)

Later, introducing the variability of the warping displacement along the wall thickness besides’ that along
the wall midline, de Miranda et al. [41] proposed a formulation based on new kinematics which preserves
the general format of the original GBT for flexural modes recovering the classical shear strain components
of the Timoshenko beam theory.

The introduction of transverse extension modes in addition to classical GBT modes (conventional modes)
and shear modes to relax the limitations related to null transversal extension was proposed by Gonçalves
et al. [55, 61, 64] considering members which are a combination of closed cells with open branches and
complex multi-cell cross-sections undergoing torsion and distortion. These modes involve only in-plane
displacements (i.e., 𝑢(𝜃) = 0) and account for the cross-section deformation due to the wall membrane
transverse extensions. Besides, they are also involved in membrane shear deformation. In general,
transverse extension and shear deformation modes are commonly referred to as non-conventional modes.

Recently, the introduction of non-conventional modes was proposed in thin-walled circular cross-sections
by Muresan et al. [103] to analyze the buckling of isotropic conical shells. The study presents the
significance of considering both transverse and shear modes and explicitly shows their coupling with
conventional modes and with each other. The non-conventional modes proposed in this publication are
vital to the formulations presented in this dissertation. The only drawback of these non-conventional
modes is the reduction of the computational efficiency of GBT due to the additional DoF associated with
them. In the following subsections, further GBT studies are reviewed using three categories, i.e. studies
concerning prismatic sections, circular pipe sections, and solution methods in GBT.

2.1.1 Prismatic sections

In the past two decades, most of the conducted studies published in GBT are focused on prismatic sections.
The key step in a GBT analysis of prismatic thin-walled beams is the cross-section analysis. In this step,
the GBT cross-sectional deformation modes and their corresponding modal mechanical properties are
determined by means of specific discretization and orthogonalization procedures which are complicated
and laborious processes based on the cross-section geometrical characteristics.

10



Chapter 2: Fundamentals of Generalized Beam Theory

Schardt [131] initially proposed to formulate the cross-sectional analysis based on the GBT system of
ordinary differential equations decoupled by applying a generic linear eigenvalue problem and neglecting
the off-diagonal terms of the cross-sectional shear stiffness matrix. This procedure not only gives
the orthogonal deformation modes but also simultaneously diagonalizes the cross-sectional stiffness
matrices. Later, this initial attempt was elaborated by using a complex quadratic eigenvalue solution
[9, 77], including non-conventional modes [64], considering an arbitrary flat-walled cross-section shape
[24], using a dynamic approach which is formulated based on the planar and warping eigenvalue problem
[115, 117, 160] and considering thin-walled cross-sections with circular rounded corners [46].

In the context of stability analysis [177], Schardt [132] formulated the basic equations of second-order
GBT based on coupled differential equations. This paper presented the linear stability analysis of open
sections subjected to longitudinally uniform normal stress distributions by introducing the concept of a
third-order coupling tensor to define the interaction or coupling of the GBT deformation modes. Based
on this concept, Simão [151, 152] later developed the nonlinear GBT analysis using a unified energy
formulation focusing on buckling analysis of both open and closed thin-walled prismatic cross-sections
and considering all modal interaction phenomena between local plate behavior, distortional behavior, and
the more classical global responses.

The studies presented by Bebiano [25, 26] improved the existing studies which were restricted to members
subjected to longitudinally uniform normal stress distributions by developing a GBT formulation to
analyze the buckling behavior of thin-walled members under longitudinally varying stress distributions.
Other important contributions which should be mentioned in this context are the development of buckling
analysis of thin-walled steel members and frames under arbitrary loading [11, 12], with variable support
condition in the cross-section [13, 36] and with variable cross-sections [106], the application of GBT in
isotropic thin-walled members with arbitrarily branched open cross-sections[42, 43], and very recently
Manta [95, 96] developed a coupled shell-GBT formulation based on Lagrange multipliers for buckling
analysis. In the last decade, the contribution of these studies, which is mostly based on linear buckling
analysis, led to the post-buckling analysis [14, 153] and the geometrically nonlinear analysis of prismatic
thin-walled sections with large displacement and rotations. Literature reviews related to studies of
geometrically nonlinear analysis are provided in Chapter 5.

In the context of physical nonlinearity, Gonçalves [56] is the first to address material nonlinearity in GBT
to investigate the buckling behavior of aluminum and stainless steel thin-walled columns. In this paper,
the plastic bifurcation of simply supported C-section and rectangular hollow section columns is analyzed
using stress-strain laws of Ramberg-Osgood [116] under a uniform compression load which is then
extended to include general loading conditions in [57]. The implementation of physical nonlinearity in
GBT analysis is further developed by including non-conventional modes [1] and geometrically nonlinear
effects [58], using a formulation based on B-Splines curves [48] and considering full material and
geometrical nonlinear analysis for large displacement regime in [2, 3, 74]. Generally, in these studies, it
can be observed that GBT is not very efficient in the analysis of physical nonlinearity since it requires
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quite a large number of deformation modes to describe certain types of nonlinear material models. An
additional literature review valid up to 2018 can be found on the PhD thesis of Ferrarotti [52].

2.1.2 Circular pipe sections

In comparison to prismatic members, the development of GBT for circular cross-sections has been given
very little attention since Richard Schardt and Christof Schardt [127, 131] first formulated the first-
order analysis of circular cylindrical sections in the 1980s. In fact, the publications discussed in this
section are the only ones which have been produced in the past two decades. This resulted in a lack of
GBT formulations related to pipe bends, fully geometrical and physical nonlinearities, explicit dynamic
analysis, and nonlinear shell-GBT coupling which are already developed for prismatic cross-sections.

Unlike prismatic thin-walled members which require a tedious cross-sectional analysis step, in thin-
walled circular pipes, this step is greatly simplified by using a Fourier-Series for the decomposition of the
cross-sectional deformation. In the original Schardt [131] formulation, which is referred to as classical
GBT in this dissertation, the transverse and in-plane shear membrane energies are neglected. Hence, this
formulation is only suitable for relatively longer circular pipe members where the longitudinal membrane
energy is dominant.

Following, the studies which have contributed to the development of this initial formulation are discussed:

- Silvestre [143]: was the first to investigate the buckling behavior of a simply supported CHS using GBT.
In this study, he introduced the axisymmetric and the torsion deformation modes which are responsible
for uniform transverse elongation and torsion, respectively. Later, he developed a GBT formulation to
analyze the elastic buckling behavior of elliptical cylindrical shells and tubes under compression [144].
Here, the main contribution was the determination of deformation modes that account for the specific
aspects related to elliptical cross-section geometry.

- Basaglia et al. [15]: developed the concepts and procedures involved in performing GBT buckling
and vibration analyses of CHS which included the derivation of the mass tensors that account for the
influence of the inertia forces. Additionally, they addressed in detail the constraint conditions required to
simulate the displacement compatibility along the end section walls of the CHS members connected at a
frame joint. In their more recent publication [16], they illustrated the application of a GBT formulation
to analyze the buckling behavior of circular cylindrical steel shells subjected to combinations of axial
compression and external pressure. In this study, shear deformation modes are considered and cubic
polynomial functions are used for the FEM implementation. But since the study did not fully recover the
null transverse elongation assumptions of classical GBT the Poisson’s effects are neglected following the
same approach as Schardt and Silvestre.

- Nedelcu [107]: developed the GBT formulation to analyze the elastic buckling behavior of isotropic
conical shells with constant thickness under axial compression. Later, this was extended by Muresan et
al.[103] who analyzed the buckling behavior of structural members with variable cross-sections under
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Chapter 2: Fundamentals of Generalized Beam Theory

various loading and boundary conditions. In this study, the non-conventional cross-section deformation
modes are considered for the first time in the analysis of circular cross-sections.

- Bianco et al. [32]: here at Bauhaus-Universität Weimar, ISM, formulated the exact GBT stiffness
matrices based on hyperbolic-trigonometric shape functions. In this study, the number of longitudinal
discretizations required was reduced to just one element and the generalized internal shear was obtained
without the typical discontinuity of Hermitian shape functions due to the higher-order continuous deriva-
tives properties of hyperbolic-trigonometric shape functions. Later, in [30] he developed for the first
time a coupled shell-GBT model for the analysis of warping and distortional transmissions based on the
multi-freedom constraint techniques specifically using the Master-Slave method. More recently, he stud-
ied the coupling of the GBT’s modes in linear analysis for semi-continued arbitrary support conditions
in pipelines [29].

2.1.3 Numerical solution methods in GBT

Initially, Schardt [131, 136] used a finite difference method of analysis, which has a clear structure and
can be directly applied on the strong form, to solve the underlying ordinary differential equations of
GBT. Using the same method, Leach [87, 88] solved this equation for the first and second-order behavior
of cold-formed members and compared the results using experimental tests. However, in the studies
conducted in the past two decades, the solution method used to solve GBT’s fundamental differential
equation is substituted by the finite element method due to its versatility and increasing popularity among
engineers.

The first attempt to formulate an exact finite element solution of GBT was carried out by Davies [38]
using hyperbolic-trigonometric shape functions, which were originally studied by Schardt [131] to find the
closed-form solution to the homogeneous part of GBT’s differential equation. Here, the major drawback
of this formulation is, since it is based on the homogeneous solution, it is not possible to consider any
type of load function.

The most significant work in the formulation of the FEM solution in GBT was done by Silvestre [146, 147].
He developed a finite element based on Hermitian shape functions which have been used extensively in
many GBT studies. Later, Gonçalves [60] proposed a cross-section node-based DoF approach for
prismatic members to improve the computational efficiency of GBT finite elements, which generally
decreases in the nonlinear analysis due to a large number of deformation modes required and the coupling
between them resulting in a larger and denser stiffness matrix.

In the studies presented by Duan [47–49], cubic B-spline basis functions were employed to approximate
the GBT amplitude functions which satisfy the higher-order continuity conditions. Whereas, Bebiano
[22, 23] proposed an exact finite element solution in GBT based on the power series method which
has the additional steps of determining the power series coefficients by means of a systematic recursive
procedure.
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More recently, Bianco [32] developed an exact finite element formulation using hyperbolic-trigonometric
shape functions similar to that of Davies [38] but based on the inhomogeneous solution of GBT ordinary
differential equations. In this approach, the shape functions are built based on the predefined stiffness
values of GBT deformation modes. This leads to two restrictions: first, the hyperbolic and trigonometric
amplification terms of the shape functions tend to infinity for higher GBT deformation modes depending
on the geometry of the element, and second, in the nonlinear analysis the shape function expression
is getting longer due to the third and fourth-order deformation modes coupling. However, the second
limitation is claimed to be solved in the PhD thesis of Bianco [27] using the advantage of the mathematical
properties of the shape functions in which the multiplication among the shape functions due to mode
coupling is expressed by a simpler linear combination of the shape functions.

In this dissertation, the numerical solution of GBT is formulated based on the finite element method using
the Hermitian shape functions which satisfy the convergence criteria and allow the easy implementation
of the stiffness matrices.

2.2 Linear formulation of GBT

In this section, the complete linear (or first-order) GBT formulation of thin-walled circular pipe is
presented considering the additional shear deformation modes, which are recently proposed in [103],
to overcome null transverse extension and in-plane shear membrane strain assumptions of classical
GBT formulations [131]. In this formulation, a CHS is considered with the local coordinate system
(𝑥 ∈ [−𝐿/2, 𝐿/2], 𝜃 ∈ [0, 2𝜋], 𝑧 ∈ [−𝑡/2, 𝑡/2]), the global cartesian coordinate system (𝑋 , 𝑌 , 𝑍), a
wall thickness 𝑡, radius 𝑟 , and length 𝐿 as shown in Figure 2.1a. The displacements of an arbitrary
point of coordinates (𝑥, 𝜃) on the middle surface of the plate are denoted by 𝑢, 𝑣, and 𝑤 in the axial (or
longitudinal), circumferential (or tangential), and radial directions, respectively.

q q

q

t

(a) Circular hallow section

t q

t

σσq 
tq

tq
q

(b) Plate stresses

Figure 2.1: Geometry, displacements and stresses of a thin-walled circular pipe.

2.2.1 Assumptions in GBT

The CHS member is defined in GBT with a complete plate in bending behavior which satisfies the Love-
Kirchhoff assumptions and membrane behavior which satisfies the Vlasov beam theory [169] assumptions.
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Chapter 2: Fundamentals of Generalized Beam Theory

The following are the general assumptions considered in this formulation:

(A1) The material follows Hooke’s law for isotropic materials.

(A2) Kirchoff’s plates assumptions are considered.

a. Thin plate
𝑟

𝑡
> 20.

b. The normal director remains straight and normal to the mid plane which means there is
no shear deformation due to bending. The shear stress 𝜏𝑥𝑧 and 𝜏𝜃𝑧 are derived through
equilibrium conditions independent of the deformations.

c. The stress in the direction normal to the plate middle surface is negligible, 𝜎𝑧 = 0.

(A3) Love’s assumptions [94]
𝑧

𝑟
<< 1, which means 𝜏𝑥𝜃 = 𝜏𝜃𝑥 in Figure 2.1b.

(A4) The thickness remains constant during deformation.

(A5) The cross section is considered constant along the member’s longitudinal axis.

(A6) In the case of classical GBT, Vlasov’s kinematic assumptions are considered:

a. The in-plane membrane shear strain is negligible.

b. The transverse membrane strain is negligible.

Assumption (A6) is later amended through the consideration of the additional shear and transverse
extension deformation modes [103].

2.2.2 Separation of variables

According to Schardt [131], in GBT, the displacements (𝑢, 𝑣, 𝑤) in the local coordinate system (𝑥, 𝜃,
𝑧) are expressed in equations (2.2) to (2.4) based on the principle of separation of variables [86] for a
straight CHS (Figure 2.1a). It contains the superposition of orthogonal modal cross-section displacement
functions for the longitudinal 𝑘𝑢(𝜃), tangential 𝑘𝑣(𝜃), and radial 𝑘𝑤(𝜃) directions expressed as a function
of the polar coordinate 𝜃 and an amplitude function 𝑘𝑉 (𝑥) for each displacement function 𝑘 along the
beam length. The subscript index after a comma indicates the derivative of the respective function. For
example, 𝑘𝑉,𝑥 (𝑥) is the first derivative of the amplitude function 𝑘𝑉 (𝑥) with respect to 𝑥.

𝑢(𝑥, 𝜃) =
∞∑︁
𝑘=1

𝑘𝑢(𝜃) 𝑘𝑉,𝑥 (𝑥) (2.2)

𝑣(𝑥, 𝜃) =
∞∑︁
𝑘=1

𝑘𝑣(𝜃) 𝑘𝑉 (𝑥) (2.3)

𝑤(𝑥, 𝜃) =
∞∑︁
𝑘=1

𝑘𝑤(𝜃) 𝑘𝑉 (𝑥) (2.4)
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2.2.3 Kinematic equations

Originally, the strain-displacement equations used by Schardt [131] to define the deformation of a CHS
are similar to that of Vlasov’s shell theory [170] in which up to the linear term of Taylor’s series expansion
is used to approximate the quotient 1/(1 + 𝑧/𝑟) in equations (2.5) to (2.7). The exact normal and shear
strains are expressed as a sum of membrane 𝜀M and bending strains 𝜅 [89]:

𝜀𝑥 = 𝜀M
𝑥 + 𝑧 𝜅𝑥 (2.5)

𝜀𝜃 =
1

1 + 𝑧/𝑟
(
𝜀M
𝜃 + 𝑧 𝜅𝜃

)
(2.6)

𝛾𝑥𝜃 =
1

1 + 𝑧/𝑟
(
𝛾M
𝑥𝜃 + 𝑧

(
1 + 𝑧

2𝑟

)
𝜅𝑥𝜃

)
(2.7)

In more recent studies of Silvestre and Basaglia et al. [16, 143], the Sanders-Koiter shell theory [81, 125]
is used to describe the strain-displacement relationships, which adds a correction factor based on con-
sistent rigid body motions under the assumption (A3). These strain-displacement equations which were
originally expressed in tensorial form are given in equation (2.8) to (2.13) [7, 176].

The membrane strains:

𝜀M
𝑥 = 𝑢,𝑥 (2.8)

𝜀M
𝜃 =

𝑣, 𝜃 + 𝑤
𝑟

(2.9)

𝛾M
𝑥𝜃 =

𝑢, 𝜃

𝑟
+ 𝑣,𝑥 (2.10)

The curvatures:

𝜅𝑥 = −𝑤,𝑥𝑥 (2.11)

𝜅𝜃 =
−𝑤, 𝜃 𝜃 + 𝑣, 𝜃

𝑟2 (2.12)

𝜅𝑥𝜃 =
−4𝑟𝑤, 𝜃 𝑥 + 3𝑟𝑣,𝑥 − 𝑢, 𝜃

2𝑟2 (2.13)

The only difference between these strain equations and the ones used by Schardt [131] is in the twisted
curvature 𝜅𝑥𝜃 which is:

𝜅𝑥𝜃 =
−2𝑟𝑤, 𝜃 𝑥 + 𝑟𝑣,𝑥 − 𝑢, 𝜃

𝑟2 (2.14)

In the numerical examples developed in this dissertation, this difference did not show any significant
change in the results of the displacement and stress fields. The detailed formulations of the strain
equations used by Schardt can be found in the PhD thesis of Bianco [27]. Furthermore, a comprehensive
review and comparison of various shell theories can be found in [89].

2.2.4 Variational formulation

The strong form of the coupled partial differential equations with initial and boundary conditions based
on the kinematics, equilibrium and constitutive equations are in general difficult to solve analytically.
Hence, the weak form of these equations is directly formulated by means of variational methods which is
the basis of the finite element method used to solve these equations numerically. The main objective of
the variational formulation is to find the displacement field that minimizes a preselected functional which
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in this case is the total potential energy Π based on the virtual work principle. The total potential energy
of the member is defined by the variation of internal 𝑈int and external 𝑈ext energies. The equilibrium is
defined as a state of zero total potential energy. This gives:

𝛿Π = 𝛿𝑈𝑖𝑛𝑡 + 𝛿𝑈𝑒𝑥𝑡 = 0 (2.15)

where 𝛿 is the variational operator.

The variation of internal energy is defined as the volume integral of the products of all stress components
by the respective virtual strains:

𝛿𝑈𝑖𝑛𝑡 =

∫
𝑉

(
𝜎𝑥𝛿𝜀𝑥 + 𝜎𝜃𝛿𝜀𝜃 + 𝜏𝑥𝜃𝛿𝜀𝑥𝜃

)
d𝑉 (2.16)

For an isotropic, linearly elastic material, the constitutive relations between stresses and strains are
expressed by means of the Young’s modulus 𝐸 , the shear modulus 𝐺 and the Poisson’s ratio 𝜇:

𝜎𝑥 =
𝐸

1 − 𝜇2 (𝜀𝑥 + 𝜇𝜀𝜃 ), 𝜎𝜃 =
𝐸

1 − 𝜇2 (𝜀𝜃 + 𝜇𝜀𝑥), 𝜏𝑥𝜃 = 𝐺𝛾𝑥𝜃 (2.17)

By substituting the GBT displacement functions in equations (2.2) to (2.4), the linear strain-displacement
kinematic relation in equations (2.5) to (2.7) and constitutive relation in equation (2.17) into equation
(2.16), it is possible to rewrite the variation of the internal energy as:

𝛿𝑈𝑖𝑛𝑡 =

∞∑︁
𝑘=1

∞∑︁
𝑖=1

∫ +𝐿
2

−𝐿
2

∮ (
𝑄 𝑖𝑢(𝜃)𝑘𝑢(𝜃)𝑖𝑉,𝑥𝑥 (𝑥)𝑘𝛿𝑉,𝑥𝑥 (𝑥)

+ 𝜇𝑄
( 𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)

𝑟

)
𝑘𝑢(𝜃)𝑖𝑉 (𝑥)𝑘𝛿𝑉,𝑥𝑥 (𝑥) + 𝐾 𝑖𝑤(𝜃)𝑘𝑤(𝜃)𝑖𝑉,𝑥𝑥 (𝑥)𝑘𝛿𝑉,𝑥𝑥 (𝑥)

+ 𝜇𝐾
( 𝑖𝑤, 𝜃 𝜃 (𝜃) − 𝑖𝑣, 𝜃 (𝜃)

𝑟2

)
𝑘𝑤(𝜃)𝑖𝑉 (𝑥)𝑘𝛿𝑉,𝑥𝑥 (𝑥)

+ 𝜇𝑄 𝑖𝑢(𝜃)
( 𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤(𝜃)

𝑟

)
𝑖𝑉,𝑥𝑥 (𝑥)𝑘𝛿𝑉 (𝑥)

+𝑄
( 𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)

𝑟

) ( 𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤(𝜃)
𝑟

)
𝑖𝑉 (𝑥)𝑘𝛿𝑉 (𝑥)

+ 𝜇𝐾 𝑖𝑤(𝜃)
( 𝑘𝑤, 𝜃 𝜃 (𝜃) − 𝑘𝑣, 𝜃 (𝜃)

𝑟2

)
𝑖𝑉,𝑥𝑥 (𝑥)𝑘𝛿𝑉 (𝑥)

+ 𝐾
( 𝑖𝑤, 𝜃 𝜃 (𝜃) − 𝑖𝑣, 𝜃 (𝜃)

𝑟2

) ( 𝑘𝑤, 𝜃 𝜃 (𝜃) − 𝑘𝑣, 𝜃 (𝜃)
𝑟2

)
𝑖𝑉 (𝑥)𝑘𝛿𝑉 (𝑥)

+ 𝐺𝑡
( 𝑖𝑢, 𝜃 (𝜃)

𝑟
+ 𝑖𝑣(𝜃)

) ( 𝑘𝑢, 𝜃 (𝜃)
𝑟

+ 𝑘𝑣(𝜃)
)
𝑖𝑉,𝑥 (𝑥)𝑘𝛿𝑉,𝑥 (𝑥)

+ 𝐺𝑡
3

12

(4𝑟 𝑖𝑤, 𝜃 (𝜃) − 3𝑟 𝑖𝑣(𝜃) + 𝑖𝑢, 𝜃 (𝜃)
2𝑟2

)
×

(4𝑟 𝑘𝑤, 𝜃 (𝜃) − 3𝑟 𝑘𝑣(𝜃) + 𝑘𝑢, 𝜃 (𝜃)
2𝑟2

)
𝑖𝑉,𝑥 (𝑥)𝑘𝛿𝑉,𝑥 (𝑥)

)
𝑟 𝑑𝜃 𝑑𝑥 (2.18)
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In equation (2.18), the volume integral in equation (2.16) has been transferred into a surface integral by
performing an integration over the wall thickness 𝑡. Separating the cross-sectional integration, equation
(2.18) can be rewritten as:

𝛿𝑈𝑖𝑛𝑡 =

∞∑︁
𝑘=1

∞∑︁
𝑖=1

∫ +𝐿
2

−𝐿
2

(
𝑖𝑘𝐶 𝑖𝑉,𝑥𝑥 (𝑥)𝑘𝛿𝑉,𝑥𝑥 (𝑥) + 𝑖𝑘𝐵 𝑖𝑉 (𝑥)𝑘𝛿𝑉 (𝑥) + 𝑖𝑘𝐷 𝑖𝑉,𝑥 (𝑥)𝑘𝛿𝑉,𝑥 (𝑥)

+ 𝑖𝑘𝐷𝜇

(
𝑖𝑉 (𝑥)𝑘𝛿𝑉,𝑥𝑥 (𝑥) + 𝑖𝑉,𝑥𝑥 (𝑥)𝑘𝛿𝑉 (𝑥)

) )
𝑑𝑥 (2.19)

with the section properties:

𝑖𝑘𝐶 = 𝑄

∮
𝑖𝑢(𝜃)𝑘𝑢(𝜃) 𝑟 𝑑𝜃 + 𝐾

∮
𝑖𝑤(𝜃)𝑘𝑤(𝜃) 𝑟 𝑑𝜃 (2.20)

𝑖𝑘𝐵 = 𝑄

∮ ( 𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)
𝑟

) ( 𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤(𝜃)
𝑟

)
𝑟 𝑑𝜃

+ 𝐾
∮ ( 𝑖𝑤, 𝜃 𝜃 (𝜃) − 𝑖𝑣, 𝜃 (𝜃)

𝑟2

) ( 𝑘𝑤, 𝜃 𝜃 (𝜃) − 𝑘𝑣, 𝜃 (𝜃)
𝑟2

)
𝑟 𝑑𝜃 (2.21)

𝑖𝑘𝐷 = 𝐺𝑡

∮ ( 𝑖𝑢, 𝜃 (𝜃)
𝑟

+ 𝑖𝑣(𝜃)
) ( 𝑘𝑢, 𝜃 (𝜃)

𝑟
+ 𝑘𝑣(𝜃)

)
𝑟 𝑑𝜃

+ 𝐺𝑡
3

12

∮ (4𝑟 𝑖𝑤, 𝜃 (𝜃) − 3𝑟 𝑖𝑣(𝜃) + 𝑖𝑢, 𝜃 (𝜃)
2𝑟2

)
×

(4𝑟 𝑘𝑤, 𝜃 (𝜃) − 3𝑟 𝑘𝑣(𝜃) + 𝑘𝑢, 𝜃 (𝜃)
2𝑟2

)
𝑟 𝑑𝜃 (2.22)

𝑖𝑘𝐷𝜇 = 𝜇𝑄

∮ ( 𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)
𝑟

)
𝑘𝑢(𝜃) 𝑟 𝑑𝜃

+ 𝜇𝐾
∮ ( 𝑖𝑤, 𝜃 𝜃 (𝜃) − 𝑖𝑣, 𝜃 (𝜃)

𝑟2

)
𝑘𝑤(𝜃) 𝑟 𝑑𝜃 (2.23)

where:

𝐾 =
𝐸𝑡3

12(1 − 𝜇2)
(2.24)

𝑄 =
𝐸𝑡

(1 − 𝜇2)
(2.25)

The coefficients 𝑖𝑘𝐶 and 𝑖𝑘𝐵 represent the member’s longitudinal and transversal directions extensional
(terms related with 𝑄) and bending (terms related with 𝐾) stiffnesses, respectively. Whereas the coef-
ficients 𝑖𝑘𝐷 and 𝑖𝑘𝐷𝜇 represent the member’s shear stiffness and additional shear stiffness due to the
Poisson effect of coupling longitudinal and transversal strains, respectively.

q

p
pp q

q

Figure 2.2: External loading.
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Chapter 2: Fundamentals of Generalized Beam Theory

Similarly, the variation of the external energy can be formulated by following the same principle of
separation of variables [105] in the longitudinal and transversal directions as presented in [131].

A general external load 𝑝(𝑥, 𝜃) is applied acting at the mid-surface of a plate element as shown in
Figure 2.2. The load consists of three components 𝑝𝑥 , 𝑝𝜃 and 𝑝𝑧 defined in the local coordinate system
(𝑥, 𝜃, 𝑧). The expression of the variation of the external energy is defined as the load component times
the corresponding virtual displacement as:

𝛿𝑈𝑒𝑥𝑡 = −
∫ +𝐿

2

−𝐿
2

∮
(𝑝𝑥𝛿𝑢 + 𝑝𝜃𝛿𝑣 + 𝑝𝑧𝛿𝑤) 𝑟 𝑑𝜃 𝑑𝑥 (2.26)

Similar to the displacements, the external general loads functions 𝑝𝑥 (𝑥, 𝜃), 𝑝𝜃 (𝑥, 𝜃) and 𝑝𝑧 (𝑥, 𝜃) are
expressed as a product of two functions which define the cross-sectional 𝑞(𝜃) and longitudinal 𝑓 (𝑥) load
distribution:

𝑝𝑥 (𝑥, 𝜃) = 𝑓𝑥 (𝑥)𝑞𝑥 (𝜃) (2.27)

𝑝𝜃 (𝑥, 𝜃) = 𝑓𝜃 (𝑥)𝑞𝜃 (𝜃) (2.28)

𝑝𝑧 (𝑥, 𝜃) = 𝑓𝑧 (𝑥)𝑞𝑧 (𝜃) (2.29)

Substituting equations (2.27) to (2.29) and the GBT displacement function equations (2.2) to (2.4) into
equation (2.26), the 𝛿𝑈𝑒𝑥𝑡 can be expressed as:

𝛿𝑈𝑒𝑥𝑡 = −
∞∑︁
𝑘=1

∫ +𝐿
2

−𝐿
2

∮ (
𝑓𝑥 (𝑥)𝑞𝑥 (𝜃)𝑘𝑢(𝜃)𝑘𝛿𝑉,𝑥 (𝑥) + 𝑓𝜃 (𝑥)𝑞𝜃 (𝜃)𝑘𝑣(𝜃)𝑘𝛿𝑉 (𝑥)

+ 𝑓𝑧 (𝑥)𝑞𝑧 (𝜃)𝑘𝑤(𝜃)𝑘𝛿𝑉 (𝑥)
)
𝑟 𝑑𝜃 𝑑𝑥 (2.30)

Separating the cross-sectional integration and integrating by part, equation (2.30) can be rewritten as:

𝛿𝑈𝑒𝑥𝑡 = −
∞∑︁
𝑘=1

[ ∫ +𝐿
2

−𝐿
2

(
𝑓𝑥,𝑥 (𝑥)𝑘𝑞𝑥 + 𝑓𝜃 (𝑥)𝑘𝑞𝜃 + 𝑓𝑧 (𝑥)𝑘𝑞𝑧

)
𝑘𝛿𝑉 (𝑥) 𝑑𝑥 + 𝑓𝑥 (𝑥)𝑘𝛿𝑉 (𝑥)

]
(2.31)

Hence, the modal load decompositions 𝑘𝑞𝑥 , 𝑘𝑞𝜃 and 𝑘𝑞𝑧 are achieved by the inner product of the
deformation modes (Table 2.1), and the functions 𝑞𝑥 (𝜃), 𝑞𝜃 (𝜃) and 𝑞𝑧 (𝜃) of the external load:

𝑘𝑞𝑥 = −
∮

𝑞𝑥 (𝜃)𝑘𝑢(𝜃)𝑟 𝑑𝜃 (2.32)

𝑘𝑞𝜃 =

∮
𝑞𝜃 (𝜃)𝑘𝑣(𝜃)𝑟 𝑑𝜃 (2.33)

𝑘𝑞𝑧 =

∮
𝑞𝑧 (𝜃)𝑘𝑤(𝜃)𝑟 𝑑𝜃 (2.34)
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2.2: Linear formulation of GBT

2.2.5 Deformation modes

The shell-type deformation modes for a CHS are formulated by following the same procedure as described
by Schardt [131]. The relationship between the longitudinal 𝑢(𝜃), tangential 𝑣(𝜃) and radial 𝑤(𝜃)
displacement functions are derived from Vlasov’s beam theory assumptions (A6) of (i) null membrane
transverse strain 𝜀M

𝜃
= 0 in equation (2.9) and (ii) null membrane in plane shear strain 𝛾M

𝑥𝜃
= 0 in equation

(2.10). Which gives:

𝑣(𝜃) = −
𝑢, 𝜃 (𝜃)
𝑟

(2.35)

𝑤(𝜃) = −𝑣, 𝜃 (𝜃) =
𝑢, 𝜃 𝜃 (𝜃)
𝑟

(2.36)

Substituting equations (2.35) and (2.36) into equations (2.20) to (2.23) and imposing the orthogonality
conditions on the deformation function 𝑘𝑢(𝜃) and its derivation until the fourth order leads to:∮

𝑖𝑢(𝜃)𝑘𝑢(𝜃) 𝑑𝜃 = 0 for 𝑖 ≠ 𝑘 (2.37)∮ (
𝑖𝑢, 𝜃 𝜃 𝜃 𝜃 (𝜃) − 𝑖𝑢, 𝜃 𝜃 (𝜃)

) (
𝑘𝑢, 𝜃 𝜃 𝜃 𝜃 (𝜃) − 𝑘𝑢, 𝜃 𝜃 (𝜃)

)
𝑑𝜃 = 0 for 𝑖 ≠ 𝑘 (2.38)

For thin-walled circular cross-sections, the solutions of equations (2.37) and (2.38) leads to two indepen-
dent sets of trigonometric functions: sin(𝑚𝜃) and cos(𝑚𝜃), where 𝑚 is a natural number. Hence, these
deformation modes can be interpreted as the components of a Fourier-Series which approximate the total
displacement field. Due to assumption (A6), none of these deformation modes have a constant shear flow
in the membrane component.

Table 2.1: Summary of orthogonal deformation modes of CHS according to classical GBT.

𝑘 𝑚 Deformation mode functions
𝑘𝑢(𝜃) 𝑘𝑣(𝜃) 𝑘𝑤(𝜃)

1 0 1 0 0
2 1 𝑟 sin(𝜃) − cos(𝜃) − sin(𝜃)
3 1 −𝑟 cos(𝜃) − sin(𝜃) cos(𝜃)
4 2 𝑟 sin(2𝜃) −2 cos(2𝜃) −22 sin(2𝜃)
5 2 −𝑟 cos(2𝜃) −2 sin(2𝜃) 22 cos(2𝜃)
...

...
...

...
...

2m m 𝑟 sin(𝑚𝜃) −𝑚 cos(𝑚𝜃) −𝑚2 sin(𝑚𝜃)
2m+1 m −𝑟 cos(𝑚𝜃) −𝑚 sin(𝑚𝜃) 𝑚2 cos(𝑚𝜃)

Here, considering the axis-symmetric and torsion modes proposed by Silvestre [143] to include uniform
torsion and transverse elongation and the non-conventional modes proposed by Muresan et al. [103] to
overcome assumptions (A6), the GBT shell-type deformation modes are classified and summarized as:

(i) Rigid-body (RB) modes (figures 2.3 and 2.4) which include:
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Chapter 2: Fundamentals of Generalized Beam Theory

a) 𝑚 = 0 corresponding to the axial extension mode 𝑘 = 1
(1𝑢(𝜃) = 1, 1𝑣(𝜃) = 0 and 1𝑤(𝜃) = 0

)
b) 𝑚 = 1 corresponding to bending modes 𝑘 = 2 and 𝑘 = 3

c) Torsion (𝑡) mode
(
𝑡𝑢(𝜃) = 0, 𝑡𝑣(𝜃) = 𝑟 and 𝑡𝑤(𝜃) = 0

)
(ii) Transverse extension or axis-symmetric (𝑎) mode (Figure 2.5)(

𝑎𝑢(𝜃) = 0, 𝑎𝑣(𝜃) = 0 and 𝑎𝑤(𝜃) = 1
)

(iii) Local shell-type (LS) modes (figure 2.6) for 𝑚 > 1

X

Y

r

q

(a) Coordinate system (b) Axial mode 1 (c) Bending mode 2 (d) Bending mode 3

u(θ)
Cross-section

Figure 2.3: Rigid-body modes warping 𝑢(𝜃) displacement.

Z

Y

r

q

(a) Coordinate system (b) Bending mode 2 (c) Bending mode 3

v(θ)=r

(d) Torsion mode 𝑡

v(θ)
w(θ) 
Cross-section

Figure 2.4: Rigid-body modes tangential 𝑣(𝜃) and radial 𝑤(𝜃) displacements.

w(θ) 
Cross-section

Figure 2.5: Axisymmetric mode 𝑎 radial 𝑤(𝜃) displacement.

Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9

u(θ)
v(θ)
w(θ)
Cross-section

Figure 2.6: Local shell-type modes.

(iv) Shear-u modes (SU) are non-conventional shear deformation modes where the warping displace-
ment 𝑘𝑢(𝜃) is identical to the one described for shell-type deformation modes (conventional mode),
while the tangential and radial displacements are null, i.e., 𝑘𝑣(𝜃) = 𝑘𝑤(𝜃) = 0. To differentiate
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2.2: Linear formulation of GBT

these modes from the conventional modes 𝑘 , an accent of U is added above the mode index
U
𝑘 .

(v) Shear-v modes (SV) are non-conventional transverse extension modes where the tangential dis-
placement 𝑘𝑣(𝜃) is identical with the one described for shell-type deformation modes (conventional
mode), while warping and radial displacements are null, i.e., 𝑘𝑢(𝜃) = 𝑘𝑤(𝜃) = 0. These modes
induce transverse membrane strains and a part of shear membrane strains. To differentiate these
modes from the conventional modes 𝑘 , an accent of V is added above the mode index

V
𝑘 .

Once the deformation modes are determined, the matrices (second-order tensors) 𝑖𝑘𝐶, 𝑖𝑘𝐵, 𝑖𝑘𝐷 and
𝑖𝑘𝐷𝜇 describing the cross-sectional linear stiffness behaviour can be determined from equations (2.20)
to (2.23). Due to the orthogonality conditions satisfied by 𝑢(𝜃), these cross-sectional stiffnesses related
to conventional modes are greatly simplified to diagonal matrices.

Table 2.2: Summary of cross-sectional stiffness for classical GBT, axisymmetric and torsional modes.

Mode Cross-sectional stiffness
𝑖 = 𝑘 𝑖𝑘𝐶 𝑖𝑘𝐵 𝑖𝑘𝐷 𝑖𝑘𝐷𝜇

t 0 0 𝐺𝜋𝑡𝑟 (2𝑟2 + 3
8
𝑡2) 0

a 𝐾2𝜋𝑟 𝑄
2𝜋
𝑟

0 0

1 𝑄2𝜋𝑟 0 0 0

2m
𝑄𝜋𝑟3 + 𝐾𝜋𝑟𝑚4

𝐾
𝜋𝑚4

𝑟3 (𝑚2 − 1)2 𝐺
𝜋𝑡3𝑚2

3𝑟
(𝑚2 − 1)2 𝜇𝐾

𝜋𝑚4

𝑟
(1 − 𝑚2)

2m+1

However, for non-conventional modes, this is not true since they have a coupling with conventional modes
and among themselves (Table 2.3). These couplings only exist for the same deformation mode index in
all categories. These properties of conventional and non-conventional modes can be better understood
by looking at the GBT element stiffness matrix (Equation (2.55)) derived in the next subsection.

2.2.6 Finite element formulation

In the longitudinal direction a finite element formulation is implemented with direct interpolation of the
deformation mode amplitude functions [15, 32]. For the approximation of the modal amplitude, 𝑘𝑉 (𝑥)
corresponding to the axial extension mode 𝑘 = 1, four node Lagrange cubic polynomials are used. Classic
Hermite cubic polynomials are applied to the remaining conventional and non-conventional modes. The
longitudinal modal amplitude function 𝑘𝑉 (𝑥) and its variation 𝑘𝛿𝑉 (𝑥) can be defined as:

𝑘𝑉 (𝑥) = 𝑘 {𝑇𝑥} 𝑘 [𝑆ℎ] 𝑘 {𝜗} (2.39)
𝑘𝛿𝑉 (𝑥) = 𝑘 {𝑇𝑥} 𝑘 [𝑆ℎ] (2.40)
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Chapter 2: Fundamentals of Generalized Beam Theory

Table 2.3: Summary of the cross-sectional stiffness for non-conventional modes and their coupling.

Mode Cross-sectional stiffness

𝑖 = 𝑘 𝑖𝑘𝐶 𝑖𝑘𝐵 𝑖𝑘𝐷 𝑖𝑘𝐷𝜇

V
𝑖

V
𝑘 0 𝜋 𝑚4

(
𝑄

𝑟
+ 𝐾

𝑟3

)
𝐺 𝜋 𝑡 𝑚2

(
𝑟 + 3 𝑡2

16 𝑟

)
0

U
𝑖

U
𝑘 𝑄 𝜋 𝑟3 0 𝐺 𝜋 𝑡 𝑚2

(
𝑟 + 𝑡2

48 𝑟

)
0

V
𝑖

U
𝑘

0 0 𝐺 𝜋 𝑡 𝑚2
(
𝑡2

16 𝑟
− 𝑟

)
𝜇𝑄𝜋 𝑟 𝑚2

U
𝑖

V
𝑘 0

V
𝑖 𝑘

0 𝐾 𝜋 𝑚4

𝑟3
(
1 − 𝑚2) 𝐺 𝜋 𝑡3 𝑚2

4 𝑟
(
1 − 𝑚2) 𝜇 𝜋 𝑚2

(
𝑄 𝑟 + 𝐾𝑚

2

𝑟

)
𝑖

V
𝑘 0

U
𝑖 𝑘

𝑄 𝜋 𝑟3 0 𝐺 𝜋 𝑡3 𝑚2

12 𝑟
(
1 − 𝑚2) 0

𝑖
U
𝑘

where {𝑇𝑥} is the variable vector, [𝑆ℎ] is the completeness coefficient matrix of either the cubic Hermite
[𝑆ℎ𝐻 ] or Lagrange [𝑆ℎ𝐿] shape functions, and {𝜗} is the vector of the beam’s nodal amplitude.

{𝑇𝑥} =
{
𝑥3 𝑥2 𝑥 1

}
(2.41)

[𝑆ℎ𝐻 ] =



2
𝐿3

1
𝐿2 − 2

𝐿3
1
𝐿2

0 − 1
2𝐿

0
1

2𝐿

− 3
2𝐿

−1
4

3
2𝐿

−1
4

1
2

𝐿

8
1
2

−𝐿
8


and [𝑆ℎ𝐿] =



− 9
2𝐿3

27
2 𝐿3 − 27

2 𝐿3
9

2𝐿3

9
4𝐿2 − 9

4𝐿2 − 9
4𝐿2

9
4𝐿2

1
8𝐿

− 27
8 𝐿

27
8 𝐿

− 1
8𝐿

− 1
16

9
16

9
16

− 1
16


(2.42)

{𝜗𝐻 }𝑇 =

{
𝑉 ( −𝐿

2
) 𝑉,𝑥 (

−𝐿
2

) 𝑉 ( 𝐿
2
) 𝑉,𝑥 (

𝐿

2
)

}
and

{𝜗𝐿}𝑇 =

{
𝑉 ( −𝐿

2
) 𝑉 ( −𝐿

6
) 𝑉 ( 𝐿

6
) 𝑉 ( 𝐿

2
)

}
(2.43)
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The GBT element stiffness matrix is derived by substituting equations (2.39) and (2.40) into the variation
of the internal energy equation (2.19). This gives:

𝛿𝑈𝑖𝑛𝑡 =
∑︁
𝑖

∑︁
𝑘

(
𝑖𝑘𝐶 𝑖𝑘 [V1] + 𝑖𝑘𝐵 𝑖𝑘 [V2] + 𝑖𝑘𝐷 𝑖𝑘 [V3] + 𝑖𝑘𝐷𝜇

(
𝑖𝑘 [V4] + 𝑖𝑘 [V4]𝑇

) )
𝑖 {𝜗} (2.44)

where:

𝑖𝑘 [V1] = 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

𝑘 {𝑇𝑥}𝑇,𝑥𝑥 𝑖 {𝑇𝑥},𝑥𝑥 𝑑𝑥 𝑖 [𝑆ℎ] (2.45)

𝑖𝑘 [V2] = 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

𝑘 {𝑇𝑥}𝑇 𝑖 {𝑇𝑥} 𝑑𝑥 𝑖 [𝑆ℎ] (2.46)

𝑖𝑘 [V3] = 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

𝑘 {𝑇𝑥}𝑇,𝑥 𝑖 {𝑇𝑥},𝑥 𝑑𝑥 𝑖 [𝑆ℎ] (2.47)

𝑖𝑘 [V4] = 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

𝑘 {𝑇𝑥}𝑇,𝑥𝑥 𝑖 {𝑇𝑥} 𝑑𝑥 𝑖 [𝑆ℎ] (2.48)

Analytical integration of equations (2.45) to (2.48) using the Hermite shape functions (i.e. if 𝑖 ≠ 1 and
𝑘 ≠ 1) gives:

𝑖𝑘 [V1] =
1
𝐿3



12 6 𝐿 −12 6 𝐿

4 𝐿2 −6 𝐿 2 𝐿2

12 −6 𝐿

sym. 4 𝐿2


and 𝑖𝑘 [V2] =

1
420



156 𝐿 22 𝐿2 54 𝐿 −13 𝐿2

4 𝐿3 13 𝐿2 −3 𝐿3

156 𝐿 −22 𝐿2

sym. 4 𝐿3


(2.49)

𝑖𝑘 [V3] =
1

30 𝐿



36 3 𝐿 −36 3 𝐿

4 𝐿2 −3 𝐿 −𝐿2

36 −3 𝐿

sym. 4 𝐿2


and 𝑖𝑘 [V4] =

1
30 𝐿



−36 −3 𝐿 36 −3 𝐿

−33 𝐿 −4 𝐿2 3 𝐿 𝐿2

36 3 𝐿 −36 3 𝐿

−3 𝐿 𝐿2 33 𝐿 −4 𝐿2


(2.50)

The sub-matrix components 𝑖𝑘 [𝑘] of the element stiffness matrix are extracted from equation (2.44) as:

𝑖𝑘 [𝑘] = 𝑖𝑘𝐶 𝑖𝑘 [V1] + 𝑖𝑘𝐵 𝑖𝑘 [V2] + 𝑖𝑘𝐷 𝑖𝑘 [V3] + 𝑖𝑘𝐷𝜇

(
𝑖𝑘 [V4] + 𝑖𝑘 [V4]𝑇

)
(2.51)

In case of the axial extension mode 𝑖 = 𝑘 = 1, the sub-matrix component 11 [𝑘] is derived from the
Lagrange shape functions and is only dependent on the longitudinal extensional stiffness as shown in
Table 2.2. This gives:

11 [𝑘] = 11𝐶 11 [V1] (2.52)
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where:

11 [V1] =
1

40𝐿



148 −189 54 −13

432 −297 54

432 −189

sym. 148


(2.53)

In assembling the element stiffness matrix, the order of the deformation modes is chosen based on the
one which results in minimum bandwidth of the stiffness matrix. That is:

𝑘 ∈ [𝑡, 𝑎, 1, 2,
V
2,

U
2, 3,

V
3,

U
3, 4,

V
4,

U
4, 5,

V
5,

U
5, . . . ] (2.54)

In equation (2.55), the element stiffness matrix [𝐾]𝑒 which is built based on the sub-matrix in equation
(2.51) and the generalized modal amplitude vector {𝑑} are shown.

[𝐾]𝑒 =



𝑡 𝑡 [𝑘] 0 0 0 0 0 0 0 . . .

𝑎𝑎 [𝑘] 0 0 0 0 0 0 . . .

11 [𝑘] 0 0 0 0 0 . . .

22 [𝑘] 2
V
2 [𝑘] 2

U
2 [𝑘] 0 0 . . .

V
2

V
2 [𝑘]

V
2

U
2 [𝑘] 0 0 . . .

U
2

U
2 [𝑘] 0 0 . . .

33 [𝑘] 3
V
3 [𝑘] . . .

V
3

V
3 [𝑘] . . .

sym. . . .



(2.55)

The zeros in equation (2.55) represent a 4 × 4 zero sub-matrix (0 → [0]).

{𝑑}𝑇 =

{
𝑡 {𝜗} 𝑎 {𝜗} 1 {𝜗} 2 {𝜗}

V
2 {𝜗}

U
2 {𝜗} 3 {𝜗}

V
3 {𝜗} . . .

}
(2.56)

The GBT linear element stiffness matrix is decoupled for the same deformation mode index. Unfortu-
nately, the additional non-conventional modes increase the size of the stiffness matrix by almost three
fold in comparison to the classical GBT formulation reducing the computational efficiency.

2.2.7 Stress resultants

The stress resultants for membrane forces, shear forces, and bending moment are formulated for a curved
GBT member. In the original Schardt formulation [131], the stress resultants 𝑁𝜃 𝜃 and 𝑁𝜑𝜃 , which are
forces per unit length, were derived using equilibrium conditions because of the null transverse and in-
plane shear membrane strain assumptions. Taking the additional non-conventional modes into account,
these stress resultants are directly derived from the membrane stresses. The complete stress resultants,
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which are forces per unit length, and the stress moments, which are moments per unit length, shown in
Figure 2.7 are derived as:

N q

N

q

M

M q

Q

q
Nq

Mq Q
q

N
Mq

q

Figure 2.7: Stress resultants.

𝑁𝑥 =

∫ +𝑡
2

−𝑡
2

𝜎𝑥 𝑑𝑧 = 𝑄

∞∑︁
𝑘=1

(
𝑘𝑢(𝜃) 𝑘𝑉,𝑥𝑥 (𝑥) + 𝜇

𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤(𝜃)
𝑟

𝑘𝑉 (𝑥)
)

(2.57)

𝑁𝜃 =

∫ +𝑡
2

−𝑡
2

𝜎𝜃 𝑑𝑧 = 𝑄

∞∑︁
𝑘=1

( 𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤 (𝜃)
𝑟

𝑘𝑉 (𝑥) + 𝜇𝑘𝑢 (𝜃) 𝑘𝑉,𝑥𝑥 (𝑥)
)

(2.58)

𝑁𝑥𝜃 =

∫ +𝑡
2

−𝑡
2

𝜏𝑥𝜃 𝑑𝑧 = 𝐺𝑡

∞∑︁
𝑘=1

( 𝑘𝑢, 𝜃 (𝜃)
𝑟

+ 𝑘𝑣 (𝜃)
)
𝑘𝑉,𝑥 (𝑥) (2.59)

𝑀𝑥 =

∫ +𝑡
2

−𝑡
2

𝜎𝑥 𝑧 𝑑𝑧 = 𝐾

∞∑︁
𝑘=1

(
− 𝑘𝑤(𝜃) 𝑘𝑉,𝑥𝑥 (𝑥) + 𝜇

𝑘𝑣, 𝜃 (𝜃) − 𝑘𝑤, 𝜃 𝜃 (𝜃)
𝑟2

𝑘𝑉 (𝑥)
)

(2.60)

𝑀𝜃 =

∫ +𝑡
2

−𝑡
2

𝜎𝜃 𝑧 𝑑𝑧 = 𝐾

∞∑︁
𝑘=1

( 𝑘𝑣, 𝜃 (𝜃) − 𝑘𝑤, 𝜃 𝜃 (𝜃)
𝑟2

𝑘𝑉 (𝑥) − 𝜇𝑘𝑤(𝜃) 𝑘𝑉,𝑥𝑥 (𝑥)
)

(2.61)

𝑀𝑥𝜃 =

∫ +𝑡
2

−𝑡
2

𝜏𝑥𝜃 𝑧 𝑑𝑧 = −𝐺𝑡
3

12

∞∑︁
𝑘=1

(4𝑟𝑘𝑤, 𝜃 (𝜃) − 3𝑟𝑘𝑣 (𝜃) + 𝑘𝑢, 𝜃 (𝜃)
2𝑟2

)
𝑘𝑉,𝑥 (𝑥) (2.62)

Due to the Love-Kirchhoff assumption, the shear stress resultants 𝑄𝑥 and 𝑄 𝜃 are obtained from equilib-
rium conditions and are given by:

𝑄𝑥 = 𝑀𝑥,𝑥 +
𝑀𝑥𝜃, 𝜃

𝑟
(2.63)

𝑄 𝜃 = 𝑀𝑥𝜃,𝑥 +
𝑀𝜃, 𝜃

𝑟
(2.64)

2.3 Numerical example

In this section, a numerical example is developed in Python [168] to validate and illustrate the application
and capabilities of the linear GBT formulation and its numerical implementation. Here, a short cantilever
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Chapter 2: Fundamentals of Generalized Beam Theory

pipe is considered as a numerical example with the physical properties and boundary conditions shown
in Figure 2.8. This specific example is chosen to show the significance of the non-conventional modes
since the energy related to the transverse and the in-plane shear membrane cannot be ignored.

The GBT analysis results of this example are compared with an equivalent shell finite element model using
ANSYS [10] software. The shell element model has been developed using quadrilateral elements with
6 DoF per node which are based on Reissner-Mindlin’s kinematic assumption with linear interpolation
functions as implemented in the software ANSYS under the name SHELL 181. The element sizes used
for the shell element models are approximately 40 × 40 mm.

Z

Yr

W
T

(a) Projected loading

q X

<

/
m

(b) Short cantilever pipe

𝐿𝑚 = 1000 mm
𝑟 = 500 mm
𝑡 = 10 mm
𝐸 = 205 GPa
𝜇 = 0.3

𝑞 = 1
N

mm2

Figure 2.8: Projected loading on a short cantilever circular pipe.

As the first step in the GBT analysis, the projected load 𝑞 has to be transformed into the local coordinates,
𝑥, 𝜃, 𝑧, whereas the longitudinal component in the 𝑥 direction is zero in this case.

Y

Z

X

θ

z

θ

q =-f sinθ

q

q = f cosθ

z

θ

q =-f sinθ

q

θ

θ

Gθ

- cosθ UGθ

Gθ

- cosθ UGθ

q = f cosθ

z

Figure 2.9: Force and projected area(
𝑓 = −𝑞 cos(𝜃)

)
in a local coordinate system.

The external load 𝑞 in Figure 2.9 is expressed in the
local coordinate system in

[
N

mm2

]
:

𝑞𝑥 (𝜃) = 0 (2.65)

𝑞𝜃 (𝜃) = 𝑞 sin(𝜃) cos(𝜃) (2.66)

𝑞𝑧 (𝜃) = −𝑞 cos(𝜃)2 (2.67)

The external force participation in each mode is determined by integrating the modal decomposition
which is the inner product of the forces in equations (2.65) to (2.67) with the respective deformation
modes in Table 2.4. In this example, there is no participation from torsion, axial and even modes since
the respective integrals are zero.

The selection of deformation modes to consider for the analysis depends on if the deformation mode
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2.3: Numerical example

has an external load participation or not. All modes with no external load participation can be ignored
since the stiffness matrix is decoupled for the same deformation mode index as shown in equation (2.55).
However, this criteria cannot be applied in longitudinally curved pipes and in nonlinear analyses since
the deformation modes in the stiffness matrices are coupled. In these cases, different approaches must be
considered which are explained in Chapter 3 and 5.

Table 2.4: External load modal decompo-
sition.

Mode 𝑘 𝑘𝑞𝜃
[ N

mm
]

𝑘𝑞𝑧
[ N

mm
]

𝑎 0 −785.39

3 333.33 666.67
V
3 333.33 0
U
3 0 0

5 −785.40 −1570.79
V
5 −785.40 0
U
5 0 0

7 600.00 1200.00
V
7 600.00 0
U
7 0 0
...

...
...

Substituting equations (2.66) and (2.67) into equations
(2.33) and (2.34) the modal decomposition of the external
load can be determined in

[ N
mm

]
as:

𝑘𝑞𝜃 =

∫ 3𝜋
2

𝜋
2

𝑞 sin(𝜃) cos(𝜃) 𝑘𝑣(𝜃) 𝑟𝑑𝜃 (2.68)

𝑘𝑞𝑧 =

∫ 3𝜋
2

𝜋
2

−𝑞 cos(𝜃)2 𝑘𝑤(𝜃) 𝑟𝑑𝜃 (2.69)

The number of deformation modes need to be considered depends on the magnitude of the external
load participation on the deformation mode and the cross-sectional stiffness. For example, in Table 2.4
the magnitude of the external load decreases while the transverse and shear stiffnesses shown in Table
2.2 increase by 𝑚4 going to higher local shell-type modes (5, 7, 11, 15, 19, 23, . . . ) which results in a
decreasing displacement contribution of higher modes.

Currently, the number of deformation modes needed for the analysis is decided by performing a conver-
gence analysis. Unfortunately, there is no systematic or efficient way to decide this. In this example,
the consideration of deformation modes up to 15 is enough to approximate the displacement field with
reasonable accuracy.

The second step in the GBT analysis is to build the element stiffness matrix [𝐾]𝑒 and force vector {𝐹}𝑒 in
order to calculate the generalized modal amplitude vector {𝑑}𝑒. In equations (2.72) and (2.71) the element
stiffness matrix and force vector is organized considering only the deformation mode with external load
participation.

{𝑑}𝑇 =

{
𝑎 {𝜗} 3 {𝜗}

V
3 {𝜗}

U
3 {𝜗} 5 {𝜗}

V
5 {𝜗}

U
5 {𝜗} 7 {𝜗} . . .

}
(2.70)
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{𝐹}𝑇 =

{
𝑎 { 𝑓 } 3 { 𝑓 }

V
3 { 𝑓 }

U
3 { 𝑓 } 5 { 𝑓 }

V
5 { 𝑓 }

U
5 { 𝑓 } 7 { 𝑓 } . . .

}
(2.71)

[𝐾]𝑒 =



𝑎𝑎 [𝑘] 0 0 0 0 0 0 0 . . .

33 [𝑘] 3
V
3 [𝑘] 3

U
3 [𝑘] 0 0 0 0 . . .

V
3

V
3 [𝑘]

V
3

U
3 [𝑘] 0 0 0 0 . . .

U
3

U
3 [𝑘] 0 0 0 0 . . .

55 [𝑘] 5
V
5 [𝑘] 5

U
5 [𝑘] 0 . . .

V
5

V
5 [𝑘]

V
5

U
5 [𝑘] 0 . . .

U
5

U
5 [𝑘] 0 . . .

77 [𝑘] . . .

sym. . . .



(2.72)

The calculations of the sub-matrices and sub-vectors for the first three types of deformation modes are
presented below based on the equations provided in subsections 2.2.5 and 2.2.6. The GBT element length
is 𝐿 = 40mm following the convergence analysis presented in Figure 2.12.

The sub-matrix 𝑎𝑎 [𝑘] can be calculated as follows:

𝑎𝑎 [𝑘] = 𝑎𝑎𝐶 [V1] + 𝑎𝑎𝐵 [V2] (2.73)

𝑎𝑎 [𝑘] = 𝐾 2𝜋𝑟
𝐿3



12 6 𝐿 −12 6 𝐿

4 𝐿2 −6 𝐿 2 𝐿2

12 −6 𝐿

sym. 4 𝐿2


+ 𝑄 2𝜋

420𝑟



156 𝐿 22 𝐿2 54 𝐿 −13 𝐿2

4 𝐿3 13 𝐿2 −3 𝐿3

156 𝐿 −22 𝐿2

sym. 4 𝐿3


(2.74)

𝑎𝑎 [𝑘] = 107



1.15 22.35 −1.09 21.98

591.49 −21.98 293.59

1.15 −22.35

𝑠𝑦𝑚. 591.49


and 𝑎{ 𝑓 } =

𝑎𝑞𝑧

12



6𝐿

𝐿2

6𝐿

−𝐿2


= 103



−15.71

−104.72

−15.71

104.72


(2.75)

In equations (2.76) to (2.79) the sub-matrices and sub-vectors for deformation mode index 3 are presented
which gives similar results as a Timoshenko’s beam [163].
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33 [𝑘] = 1011



1.66 33.18 −1.66 33.18

884.68 −33.18 442.34

1.66 −33.18

𝑠𝑦𝑚. 884.68


'

U
3

U
3 [𝑘] ' 3

U
3 [𝑘] (2.76)

V
3

V
3 [𝑘] = 108



0.37 1.25 −0.37 1.23

66.15 −1.23 −16.58

0.37 −1.25

𝑠𝑦𝑚. 66.15


and

V
3{ 𝑓 } = 103



6.67

44.44

6.67

−44.44


(2.77)

3
V
3 [𝑘] = 108



−0.32 −1.06 0.32 −1.06

−11.67 −56.62 1.06 14.15

0.32 1.06 −0.32 1.06

−1.06 14.15 11.67 −56.62


and 3{ 𝑓 } = 103



20.00

133.33

20.00

−133.33


(2.78)

V
3

U
3 [𝑘] = 108



−0.69 −12.92 0.69 −2.30

−2.30 −122.67 2.30 30.67

0.69 2.30 −0.69 12.92

−2.30 30.67 2.30 −122.67


and

U
3{ 𝑓 } =



0.00

0.00

0.00

0.00


(2.79)

In equations (2.80) to (2.83) the sub-matrices and sub-vectors for deformation mode index 5 are presented.
This mode represents ovalization deformation which is similar to the ones used by von Kármá [171] and
to the elbow element formulated by Bathe [18].

55 [𝑘] = 1011



1.66 33.19 −1.66 33.19

885.12 −33.19 442.56

1.66 −33.19

𝑠𝑦𝑚. 885.12


'

U
5

U
5 [𝑘] ' 5

U
5 [𝑘] (2.80)
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V
5

V
5 [𝑘] = 108



1.52 5.14 −1.47 4.84

265.62 −4.84 −67.09

1.52 −5.14

𝑠𝑦𝑚. 265.62


and

V
5{ 𝑓 } = 103



−15.71

−104.72

−15.71

104.72


(2.81)

5
V
5 [𝑘] = 108



−1.27 −4.25 1.27 −4.25

−46.71 −226.58 4.25 56.65

1.27 4.25 −1.27 4.25

−4.25 56.65 46.71 −226.58


and 5{ 𝑓 } = 103



−47.12

−314.16

−47.12

314.16


(2.82)

V
5

U
5 [𝑘] = 108



−2.76 −51.66 2.76 −9.20

−9.20 −490.68 9.20 122.67

2.76 9.20 −2.76 51.66

−9.20 122.67 9.20 −490.68


and

U
5{ 𝑓 } = 103



0.00

0.00

0.00

0.00


(2.83)

Once all the sub-matrices and sub-vectors are determined, the system stiffness matrix and the force vector
are assembled using the LM connectivity matrix described in [17] after having to modify it based on the
GBT’s requirements. Finally, the generalized modal amplitude vector {𝑑} in equation (2.84) is solved
after applying fixed boundary conditions using pythons NumPy linear equation solver which is based on
LU decomposition with partial pivoting.

{𝐹} = [𝐾]{𝑑} (2.84)

The third step in the GBT analysis is to determine the local displacements 𝑢, 𝑣 and 𝑤 (equations (2.85)
to (2.87)) by summing up the modal amplitude of the deformations modes considered in the analysis,
equation (2.88), after multiplying them by their respective deformation function (Table 2.1) .

𝑢(𝑥, 𝜃) =
∑︁
𝑖

𝑖𝑢(𝜃) 𝑖𝑉,𝑥 (𝑥) (2.85)

𝑣(𝑥, 𝜃) =
∑︁
𝑖

𝑖𝑣(𝜃) 𝑖𝑉 (𝑥) (2.86)

𝑤(𝑥, 𝜃) =
∑︁
𝑖

𝑖𝑤(𝜃) 𝑖𝑉 (𝑥) (2.87)

where

𝑖 ∈ [𝑎, 3,
V
3,

U
3, 5,

V
5,

U
5, 7,

V
7,

U
7, 11,

V
11,

U
11, 15,

V
15,

U
15] (2.88)
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2.3: Numerical example

As a sample, in Table 2.5 the solution of the GBT at the tip of the cylinder 𝑋 = 1000 mm is presented by
substituting the value of the modal amplitude value 𝑉 ( 𝑥

𝐿𝑚
= 1) (Figure 2.14) into equations (2.86) and

(2.87). Here, only the transversal displacements 𝑣 and𝑤 are presented since the longitudinal displacement
𝑢 is small in comparison.

Table 2.5: Comparison of the GBT and shell transversal displacements results at the tip of the cantilever
pipe.

GBT[mm] Shell[mm] Difference[%]
𝜃 𝑣 𝑤 𝑣 𝑤 𝑣 𝑤

0.00 0.000 0.408 0.000 0.402 0.00 1.55
0.2𝜋 0.060 −0.869 0.061 −0.874 −1.63 −0.46
0.4𝜋 0.605 0.098 0.599 0.100 0.95 −1.80
0.6𝜋 −0.796 3.769 −0.802 3.763 −0.80 0.14
0.8𝜋 −2.206 −0.684 −2.205 −0.688 0.05 −0.65
1.0𝜋 0.000 −5.301 0.000 −5.320 0.00 −0.17
1.2𝜋 2.206 −0.684 2.205 −0.688 0.05 −0.65
1.4𝜋 0.796 3.769 0.802 3.763 −0.80 0.14
1.6𝜋 −0.605 0.098 −0.599 0.100 0.95 −1.80
1.8𝜋 −0.060 −0.869 −0.061 −0.874 −1.63 −0.46

Max. = -0.03 
Min. = -0.03

(a) 𝑎

+
Max. = 0.63 
Min. = -0.63

(b) 3,
V
3,

U
3

+
Max. = 2.42 
Min. = -2.42

(c) 5,
V
5,

U
5

+
Max. = 2.35 
Min. = -2.35

(d) 7,
V
7,

U
7

+
Max. = 0.13 
Min. = -0.13

(e) 11,
V

11,
U

11

+
Max. = 0.01 
Min. = -0.01

(f) 15,
V

15,
U

15

=

π/4

π/2

3π/4

π

5π/4

3π/2

7π/4

0-5.5
-2.5

-

2.5
0 5.5- --

3.78 Max. = 
Min. = -5.30

(g) 𝑤total ( ×35)

 GBT
            Shell 
 Cross-section

Figure 2.10: Displacement contribution of GBT deformation mode groups and comparison of final GBT
solution with shell results [mm].

In Figure 2.10, the same results as in Table 2.5 are presented graphically showing the GBT modal
decomposition. The coordinate system shown in Figure 2.10g applies to all cross-sectional plots in this
example. The modes which contribute most to the final deformation shape of the cantilever pipe are those
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Chapter 2: Fundamentals of Generalized Beam Theory

of groups 5 and 7. Deformation mode groups above 15 have a contribution of displacement which is less
than 10−2. The comparison shown in Figure 2.10b is between the center line displacement of the shell
model and the GBT model involving only bending modes (3,

V
3,

U
3).

The deformed configuration in Figure 2.11 shows a perfect agreement between the GBT and shell model.

(a) GBT (b) Shell

Figure 2.11: Deformation shape of a short cantilever pipe (×40).

Table 2.6: Comparison of GBT and shell results without the cross-sectional deformation.

Type of analysis Tip displacement in
[mm]

Mean relative
difference [%]

Shell (considering the center line displacement) 0.61 -
GBT, RB(3) ⇒ Euler-Bernoulli beam 0.14 77.78
GBT, RB(3) + SU + SV modes ⇒ Timoshenko beam 0.63 3.27

Table 2.7: Comparison of GBT with different modes and shell results.

Type of analysis Tip displacement in
[mm] at 𝜃 = 𝜋

Mean relative
difference [%]

Shell 5.32 -
GBT, RB(3) + LS(5,7,11) modes ⇒ Classical GBT 3.14 43.23
GBT, RB(3) + LS(5,7,11,15) + 𝑎+ SU + SV modes 5.30 0.35
GBT, RB(3) + LS(5,7,11,15,19,23)+ 𝑎 + SU + SV modes 5.31 0.21

The mean relative difference (MRD) is calculated by comparing all cross-sectional nodal displacements
of the shell finite element model with the GBT model.

Mean relative difference =
1
𝑚

𝑚∑︁
𝑖=1

����GBT𝑖 − Shell𝑖
Shell𝑖

���� × 100% (2.89)

where:
𝑚 is the total number of points at the cross-section. This value is governed by the number of cross-
sectional nodes on the shell element model since GBT has a continuous solution at the cross-section.
Shell𝑖 is the solution of the shell analysis at the 𝑖𝑡ℎ node.
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2.3: Numerical example

GBT𝑖 is the solution of the GBT analysis at the location of the 𝑖𝑡ℎ shell node.

In Tables 2.6 and 2.7, the convergence of the GBT solution while considering different combinations of
deformation modes is presented. In Table 2.6, the interpretation of GBT deformation modes in terms of
classical beam theories is presented and the results of GBT are compared with the center line displacement
of the shell model. The comparisons in Table 2.7 show that in this example the non-conventional modes
are crucial for the analysis. A classical GBT alone cannot solve this problem.
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Figure 2.12: GBT solution convergence.

Figure 2.12 shows the finite element solution convergence with respect to the number of GBT elements.
Longitudinally, the GBT model is discretized by 25 elements, which is enough to reach a displacement
convergence of above 99.50 %. In fact in this example, with just two GBT elements the solution can be
approximated with an accuracy of above 94 %.

Considering the number of modes and elements used, the total degrees of freedom (DoF) for the GBT
model is 800 which is below 7.0 % of the equivalent shell element model which has 12, 000 DoF. Although
the GBT has a denser stiffness matrix than the shell element model as shown in Figure 2.13, the GBT
stiffness matrix would still require significantly less storage and computational steps due to its very small
size.

Here, to have a fair comparison between GBT and shell computation speed the stiffness matrix of the shell
element model is extracted from ANSYS and solved using the same linear equation solver and computer
processor as the GBT model. Table 2.8 shows that the GBT model needs less than 1.0 % of the time
needed by the shell element model.

Table 2.8: Computational speed comparison of GBT and shell.

GBT Shell
System stiffness matrix size 800 × 800 12000 × 12000
Computation speed: using the same linear equation solver and processor 0.0005 s 0.0660 s
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Figure 2.13: The sparsity pattern of the system stiffness matrices.
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Figure 2.14: GBT mode amplitude.
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2.3: Numerical example

In Figure 2.14, the modal decomposition of GBT is presented for the longitudinal solution 𝑉 (𝑥). This
important feature of GBT shows explicitly the behavior and contribution of each deformation mode
along the member length. For example, for the deformation mode 𝑎, which represents a uniform radial
extension, it can be clearly seen that how the local effect of bending at clamped support

𝑥

𝐿𝑚
= 0 fade

away into the membrane behavior. This decay length [4] is about 0.2𝐿𝑚 which is directly dependent
on the wall-thickness and support condition. The same effect can be observed for the SV modes which
also involve pure transversal displacement. In these figures, it can be observed that deformation modes
3, 5, 7 have the highest contribution to the total deformation. From the non-conventional modes, SU have
generally larger contribution in comparison to SV modes.

The last step in the GBT analysis is to determine the stress resultants based on the equations (2.57) to
(2.64). Unfortunately, this step is very often overlooked in many GBT studies by being solely dependent on
the displacement field results to validate various GBT formulations. In this dissertation, the formulations
presented in the next three chapters are validated not only using displacement field results but also stress
field results.

In Figures 2.15 to 2.18, detailed cross-sectional comparisons of displacement and stress resultants of
GBT and shell are presented at the mid span of the cantilever pipe. The radial and angular coordinates
of the polar plots in these figures are similar to that of Figure 2.10g and represent the magnitude of the
displacement or the stress resultant and the angle 𝜃, respectively. The dashed line (or the undeformed
cross-section) represents zero magnitude. The local displacement 𝑤 is shown as 𝑤total for all modes,
𝑤bending for bending modes and 𝑤local for all LS modes.

Max. = 1.71 
Min. = -2.57

(a) 𝑤total (×80)

Max. = 0.41 
Min. = -0.41

(b) 𝑤bending (×260)

Max. = 1.84 
Min. = -2.16

(c) 𝑤local (×80)

 GBT
            Shell 
 Cross-section

Figure 2.15: Comparison of displacements at the mid span [mm].

Table 2.9 summarizes the quantitative deviations between the GBT and shell model analyses at a cross-
section using the mean relative difference (equation (2.89)) and the standard deviation of the relative
differences. Here, the maximum differences between GBT and shell for the significant stress resultants
are below 6%.

Table 2.9: Comparison of GBT and shell results.

𝑀𝑥 𝑀𝜃 𝑀𝑥𝜃 𝑁𝑥 𝑁𝜃 𝑁𝑥𝜃 𝑄𝑥 𝑄 𝜃 𝑤local 𝑤bending 𝑤total

Relative mean difference (%) 5.24 4.15 1.59 4.29 0.19 2.68 9.22 4.39 0.31 1.32 0.34
Standard deviation (%) 1.85 1.39 0.35 2.25 0.11 0.06 4.00 3.13 0.65 − 0.7
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Figure 2.16: Comparison of bending moment per unit length at the mid span
[
Nmm
mm

]
.
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Figure 2.17: Comparison of normal force per unit length at the mid span
[

N
mm

]
.

Max. = 2.22 
Min. = -2.12

(a) 𝑄𝑥

Max. = 5.15 
Min. = -5.15

(b) 𝑄 𝜃
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Figure 2.18: Comparison of shear force per unit length at the mid span
[

N
mm

]
.

The maximum relative difference is observed for the shear force in the longitudinal direction. This is
probably be caused by the difference in plate theory assumption which is the shell model considers shear
deformations through the thickness.

2.4 Locking problem

Locking is an effect that is due to the inability of a finite element formulation to represent certain
deformation modes without unwanted, parasitic strains and/or stresses [34].
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2.4: Locking problem

2.4.1 Shear locking

In this subsection, the developed GBT formulation is tested using a single element for a possible in-plane
shear locking problem. In-plane shear locking is caused by incompatible shape functions which leads to
artificial in-plane shear forces.

Using a simply supported thin-walled circular pipe beam under a constant moment load as shown in
Figure 2.19, it is possible to study the ability of the GBT element to describe a constant curvature and
shear strain.

mm

L

;

<

𝐿 = 1000 mm
𝑟 = 5 mm
𝑡 = 0.005 mm
𝐸 = 205 GPa
𝜇 = 0.3
𝑚 = 1 kN mm

Figure 2.19: A simply supported thin-walled circular pipe under uniform bending moment.

Here, a very thin-walled pipe
𝑟

𝑡
= 1000 is considered to reduce the plate energy in bending and to focus on

the membrane behavior. The moment load is applied in the GBT model using a longitudinally distributed
force based on the deformation function 3𝑢(𝜃), which generates pure bending in the deformation mode
index group 3 and zero force in all the other deformation modes.

[𝐾] =


33 [𝑘] 3

V
3 [𝑘] 3

U
3 [𝑘]

V
3

V
3 [𝑘]

V
3

U
3 [𝑘]

𝑠𝑦𝑚.
U
3

U
3 [𝑘]


, {𝑑} =


3 {𝜗}
V
3 {𝜗}
U
3 {𝜗}


and {𝐹} =


3 { 𝑓 }
V
3 { 𝑓 }
U
3 { 𝑓 }


(2.90)

Hence, in equation (2.90) the stiffness matrix [𝐾] and force vector {𝐹} used to calculate the generalized
modal amplitude vector {𝑑} are only dependent on deformation mode 3. In equations (2.91) to (2.95) the
sub-matrices and sub-vectors for deformation mode index 3 are presented.

33 [𝑘] = 3
U
3 [𝑘] =



0.01 2.65 −0.01 2.65

1769.30 −2.65 884.65

0.01 −2.65

𝑠𝑦𝑚. 1769.30


and 3{ 𝑓 } =



0.00

1000.00

0.00

−1000.00


(2.91)
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V
3

V
3 [𝑘] = 105



0.26 37.07 0.09 −21.91

6741.03 21.91 −5055.36

0.26 −37.07

𝑠𝑦𝑚. 6741.03


and

V
3{ 𝑓 } =



0.00

0.00

0.00

0.00


(2.92)

U
3

U
3 [𝑘] =



7.44 621.91 −7.44 621.91

827444.31 −621.91 −205534.10

7.44 −621.91

𝑠𝑦𝑚. 827444.31


and

U
3{ 𝑓 } =



0.00

1000.00

0.00

−1000.00


(2.93)

3
V
3 [𝑘] =



−6.37 −530.79 6.37 −530.79

−5838.70 −707721.48 530.79 176930.37

6.37 530.79 −6.37 530.79

−530.79 176930.37 5838.70 −707721.48


(2.94)

V
3

U
3 [𝑘] =



−13.80 −6457.96 13.80 −1150.05

−1150.05 −1533396.36 1150.05 383349.09

13.80 1150.05 −13.80 6457.96

−1150.05 383349.09 1150.05 −1533396.36


(2.95)

The generalized modal amplitude vector {𝑑} in equation (2.84) is solved after applying the boundary
conditions, which are:

a) pin-pin for the 33 [𝑘] matrix which has two singularities.

b) pin-free for the
U
3

U
3 [𝑘] matrix which has one singularity.

c) free-free for the
V
3

V
3 [𝑘] matrix which has no singularities.

The results of the generalized modal amplitude vector {𝑑} as presented in equation (2.96) shows the
rotations at the support in 3{𝜗} and a uniform transverse 𝑣 displacement due to the Poisson effect in

V
3{𝜗}

{𝑑} =


3 {𝜗}
3 {𝜗}
U
3 {𝜗}


where 3{𝜗} =



0.00

1.24

0.00

−1.24


,

V
3{𝜗} =



0.02

0.00

0.02

0.00


and

U
3{𝜗} =



0.00

0.00

0.00

0.00


(2.96)
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2.4: Locking problem

In Figure 2.20, the cross-sectional 𝑤 displacement and the membrane longitudinal force at the mid span
are shown based on the interpolation of the nodal results. All the rest of the stress resultants are negligible
in this example.

Max. = 3.105e+02 
Min. = -3.105e+02

(a) 𝑤 in [mm]

Max. = 1.273e+01 
Min. = -1.273e+01

(b) 𝑁𝑥 in
[

N
mm

]
Figure 2.20: Displacement and normal force at the mid span.

Table 2.10: The value of the amplitude function and its derivatives along 𝑥.

𝑉 (𝑥) 𝑉,𝑥 (𝑥) 𝑉,𝑥𝑥 (𝑥)

𝑥 3
V
3

U
3 3

V
3

U
3 3

V
3

U
3

−𝐿
2

0.00 0.02 0.00 1.24 0.00 0.00 −2.48 × 10−3 0.00 0.00

0 310.55 0.02 0.00 0.00 0.00 0.00 −2.48 × 10−3 0.00 0.00
𝐿

2
0.00 0.02 0.00 −1.24 0.00 0.00 −2.48 × 10−3 0.00 0.00

In order to check if the element produces a constant bending moment and zero shear force throughout
the span, the cross-sectional bending moment and shear force are calculated based on the GBT modal
amplitude function and its derivatives presented in Table 2.10.

The cross-sectional bending moment is determined as:

𝑀𝑍 (𝑥) =
∫
𝐴

𝜎𝑥 𝑦 𝑑𝐴 =

∫
𝐴

𝜎𝑥 𝑟 cos(𝜃) 𝑑𝐴 = 𝑟2𝑡

∮
cos(𝜃)𝜎𝑥 𝑑𝜃 (2.97)

Substituting the GBT displacement functions in equations (2.2) to (2.4), the constitutive relation in
equation (2.17), and the amplitude function values in Table 2.10 into equation (2.97) gives:

𝑀𝑍 (𝑥) = 𝑄𝑟2
∮

cos(𝜃)
∑︁
𝑘

(
𝑘𝑢(𝜃) 𝑘𝑉,𝑥𝑥 (𝑥) + 𝜇

𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤(𝜃)
𝑟

𝑘𝑉 (𝑥)
)
𝑑𝜃 for 𝑘 ∈ [3,

V
3,

U
3]

= 𝑄𝑟2
∮

cos(𝜃)
(
3𝑢(𝜃) 3𝑉,𝑥𝑥 (𝑥) + 𝜇

V
3𝑣, 𝜃 (𝜃)
𝑟

V
3𝑉 (𝑥) +

U
3𝑢(𝜃)

U
3𝑉,𝑥𝑥 (𝑥)

)
𝑑𝜃

= 1000 N mm for ∀𝑥 and 𝑥 ∈
[
−𝐿
2
,
𝐿

2

]
(2.98)
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Chapter 2: Fundamentals of Generalized Beam Theory

Following the same procedure the cross-sectional shear force can be calculated as:

𝑄𝑌 (𝑥) =
∫
𝐴

𝜏𝑥𝜃 𝑑𝐴 = 𝐺𝑡

∮ ∑︁
𝑘

( 𝑘𝑢, 𝜃 (𝜃)
𝑟

+ 𝑘𝑣 (𝜃)
)
𝑘𝑉,𝑥 (𝑥) 𝑟 𝑑𝜃 for 𝑘 ∈ [3,

V
3,

U
3]

=

∫
𝐴

𝜏𝑥𝜃 𝑑𝐴 = 𝐺𝑡

∮ ( U
3𝑢, 𝜃 (𝜃)
𝑟

U
3𝑉,𝑥 (𝑥) +

V
3𝑣 (𝜃)

V
3𝑉,𝑥 (𝑥)

)
𝑟 𝑑𝜃

= 0 for ∀𝑥 and 𝑥 ∈
[
−𝐿
2
,
𝐿

2

]
(2.99)

The results in equations (2.98) and (2.99) show that the formulated GBT element can produce a constant
bending moment and zero shear force, proving that the element is shear lock free.

For further validation, the simply supported beam in Figure 2.19 is analyzed using the lock free mixed
Timoshenko element stiffness matrix in equation (2.100) as presented by Bathe [17] in Chapter 4, which
is based on the Hellinger-Reissner variational principle [73, 118].

[𝐾]mixed =



𝐺𝐴𝑠

𝐿

𝐺𝐴𝑠

2
−𝐺𝐴𝑠

𝐿

𝐺𝐴𝑠

2
𝐺𝐴𝑠 𝐿

4
+ 𝐸𝐼
𝐿

−𝐺𝐴𝑠

2
𝐺𝐴𝑠 𝐿

4
− 𝐸𝐼

𝐿

𝐺𝐴𝑠

𝐿

−𝐺𝐴𝑠

2

𝑠𝑦𝑚.
𝐺𝐴𝑠 𝐿

4
+ 𝐸𝐼
𝐿


and {𝐹} =



0

𝑚

0

−𝑚


(2.100)

{𝑑} =



0.00

𝑚 𝐿

2𝐸𝐼

0.00

−𝑚 𝐿
2𝐸𝐼


=



0.00

1.24

0.00

−1.24


(2.101)

After applying the material, geometry and boundary conditions, the displacement fields which are obtained
from equation (2.100) are the same as the results of GBT in equation (2.96).

2.4.2 Membrane locking

In this subsection, the linear GBT element is tested using an example involving a single GBT element
which could show a possible membrane locking problem related to the transverse curvature of the pipe.
Membrane locking is a problem which results from the inability of an element to represent inextensional
bending deformations without additional parasitic membrane contributions [33, 34]. This type of locking
only occurs in curved elements since the bending and membrane actions are coupled together.

Here, the critical parameter is the wall thickness of the member since the ratio of the bending stiffness
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2.4: Locking problem

in equation (2.24) to that of membrane stiffness in equation (2.25) is proportional to the square of the
thickness 𝑡. Hence, a decrease in the wall thickness or an increase in the slenderness

𝑟

𝑡
will cause the

large parts of the internal energy to be influenced by the parasitic membrane action [51, 124].

To test the formulated GBT element for a possible membrane locking problem during transverse bending,
a short strip of a pipe is analyzed using a single GBT element under a projected symmetric loading as
shown in Figure 2.21. Since this pipe has a free boundary condition, no axial loading, and no Poisson
effect, the problem will only involve pure transverse deformation.

t
Z

Yr

T

T

(a) Cross-section

Z

X

/

T

T

(b) Longitudinal section

𝐿 = 100 mm
𝑟 = 500 mm
𝐸 = 205 GPa
𝜇 = 0.0

𝑞 = 0.0002
N

mm2

𝑡 → variable

Figure 2.21: Pipe section under projected loading.

Due to the symmetric nature of the load 𝑞, the GBT load decomposition in equations (2.68) and (2.69)
will result in load contributions only in modes 𝑎, 5, and

V
5. Hence, for this pipe section the stiffness matrix

[𝐾], the external force vector {𝐹} and the generalized modal amplitude vector {𝑑} can be formulated as:

[𝐾] =


𝑎𝑎 [𝑘] [0] [0]

55 [𝑘] 5
V
5 [𝑘]

𝑠𝑦𝑚.
V
5

V
5 [𝑘]


, {𝑑} =


𝑎 {𝜗}
5 {𝜗}
V
5 {𝜗}


and {𝐹} =


𝑎 { 𝑓 }
5 { 𝑓 }
V
5 { 𝑓 }


(2.102)

In equations (2.104) and (2.105), the values of the stiffness matrix [𝐾], the external force vector {𝐹}, and
the generalized modal amplitude vector {𝑑} are calculated for 𝑡 = 1.0 mm. Using equation (2.4), Table
2.1 and vector {𝑑} in equation (2.105), the maximum cross-sectional displacement at 𝜃 =

𝜋

2
(referring to

the coordinate system shown in Figure 2.1) can be calculated as:

𝑤(𝑥, 𝜋
2
) =

∑︁
𝑘

𝑘𝑤( 𝜋
2
) 𝑘𝑉 (𝑥) = 𝑎𝑤( 𝜋

2
) 𝑎 {𝜗} + 5𝑤( 𝜋

2
) 5 {𝜗} +

V
5𝑤( 𝜋

2
)

V
5 {𝜗}

= −1.22 × 10−4 + 22 cos(𝜋) (−1.52 × 101) = −60.8 mm (2.103)

In Figure 2.22, the deformed configuration of the pipe is shown for 𝑡 = 1.0 mm. Here, the mean relative
difference between the GBT and shell model is below 0.25 % in the displacement field.

42



Chapter 2: Fundamentals of Generalized Beam Theory
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(a) GBT (b) Shell

Figure 2.22: The deformed shape of the pipe section (×3).

Table 2.11: Comparison of the maximum displacements in shell and GBT model of the pipe section for
different wall thicknesses 𝑡.

Change in thickness 𝑡 [mm]

4 2 1 0.5

Slenderness
𝑟

𝑡
125 250 500 1000

Shell model [mm] 0.95 7.58 60.67 485.42

GBT model [mm] 0.95 7.62 60.80 487.81

Difference [%] 0.21 0.53 0.21 0.49

In Table 2.11, the maximum displacement of the shell (4 nodes, locking-free) and GBT models are
compared while changing the wall thickness 𝑡 gradually. Since the displacement response of the GBT
model remains accurate during the change in the wall thickness of the pipe, the formulated GBT element
does not exhibit a membrane locking problem. The reason for this is because the cross-sectional
deformations are approximated exactly through the GBT deformation modes. In other words, the solution
calculated with the GBT element is exact in this test.
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Chapter 3

Formulation of GBT for pipe bends

Pipe bends are essential to engineering structures such as pipeline systems, bridges, and industrial plants.
In comparison to the stress and deformation analyses of straight pipes, the analysis of pipe bends is
a complex problem due to the strong coupling effect of the longitudinal bending, warping, and cross-
sectional ovalization.

In this chapter, the linear Generalized Beam Theory (GBT) is formulated for the stress and deformation
analysis of curved thin-walled circular pipes. The decoupled GBT stiffness matrix formulated for
the straight circular pipes in the previous chapter is not applicable for the circular pipe bends since
the reformulated GBT deformation modes based on the kinematics of pipe bends will have a strong
coupling effect with each other. This nature of pipe bends is explicitly presented in this chapter through
the identification of the possible couplings between the considered GBT deformation modes and the
formulation of the corresponding coupled curved GBT stiffness matrix.

Since the early study of von Karman [171] on the behavior of circular pipe bends numerous studies have
been conducted on this topic. In his study, von Karman used flexibility and stress intensification factors
to scale the stiffness constants and stress results of a simple curved beam analysis assuming constant
ovalization throughout the pipe bend. This formulation was later extended by Bathe [18] considering
variable ovalization along the pipe bend or elbow. Due to the limitations of beam analysis, other studies
focused on shell finite element methods [156] which require a higher degree of discretization. Here, to
overcome the high computational costs of the shell finite element method, alternative formulations have
been proposed in [54] and [91]. A more detailed review of pipe bends mechanical behavior can be found
in [80] based on previous analytical [109], numerical [110], and experimental studies.

In the context of GBT, the study of curved members was first conducted by Peres et al. [111] for arbitrary
prismatic open cross-sections. Later, Peres extended this study in [112] by developing a systematic
procedure to obtain the cross-section deformation modes for arbitrary flat-walled cross-sections which
are open, closed, or mixed. In these studies, illustrative examples were presented involving complex
local-distortional-global deformations, which have a perfect agreement with shell finite element analysis
in displacement field comparison. In a more recent study [113], he addressed the problem of membrane
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locking, which was observed in his previous studies, by developing a mixed finite element formation.

However, the studies conducted on curved prismatic thin-walled sections cannot be applied to circular
pipe bends since the formulations used there cannot consider membrane transverse and shear coupling
behavior. Therefore, the main objectives of this chapter are the following:

• to develop a linear GBT formulation for circular pipe bends considering any type of loading and
boundary conditions.

• to show the effect of the toroidal to cross-sectional radius ratio 𝛼, i.e., 𝛼 =
𝑟

𝑅
, using the GBT

deformation modes.

• to present the effect of the Poisson ratio in stress and displacement fields, which is often ignored in
the studies of circular pipe sections since non-conventional modes are often not considered.

• to identify the limitations of the developed displacement-based formulation due to the membrane
locking problem.

In this chapter, the step-by-step formulation of a curved GBT element is presented starting from the
kinematic descriptions leading to the internal and external energy variational formulations which give the
coupled stiffness coefficients and describe the modal load decomposition, respectively. Next, in Sections
3.2 to 3.4, the procedure for determining the GBT deformation modes, the finite element formulation
of the stiffness matrix based on the possible mode couplings, and the derivation of the stress resultants
following the fundamental principles of GBT are presented. Finally, to illustrate the application and
capabilities of the developed GBT formulation, a set of numerical examples with in-plane, out-of-plane,
and pressure loading conditions involving a combination and coupling of bending, warping, torsional,
axisymmetric, and local deformations is presented. For the purpose of validation, these examples are
compared with refined shell finite element models in both displacement and stress fields. Furthermore,
the developed displacement-based GBT element is tested for membrane locking problem to identify the
limitations of the formulated GBT element.

3.1 Linear GBT formulation for pipe bends

In GBT, the displacements (𝑢, 𝑣, 𝑤) in the local coordinate system (𝜑, 𝜃, 𝑧) are expressed in equations (3.1)
to (3.3) based on the principle of separation of variables for a curved CHS as shown in Figure 3.1, with a
bend angle 𝜓 and radius 𝑅. It contains the superposition of orthogonal modal cross-section displacement
functions for the longitudinal 𝑘𝑢(𝜃), tangential 𝑘𝑣(𝜃), and radial 𝑘𝑤(𝜃) directions expressed as a function
of the polar coordinate 𝜃 and an amplitude function 𝑘𝑉 (𝜑) for each displacement function 𝑘 along the
beam length. The subscript index after a comma indicates the derivative of the respective function. For
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example, 𝑘𝑉,𝜑 (𝜑) is the first derivative of the amplitude function 𝑘𝑉 (𝜑) with respect to 𝜑.

𝑢(𝜑, 𝜃) =
∞∑︁
𝑘=1

𝑘𝑢(𝜃)𝑘𝑉,𝜑 (𝜑) (3.1)

𝑣(𝜑, 𝜃) =
∞∑︁
𝑘=1

𝑘𝑣(𝜃)𝑘𝑉 (𝜑) (3.2)

𝑤(𝜑, 𝜃) =
∞∑︁
𝑘=1

𝑘𝑤(𝜃)𝑘𝑉 (𝜑) (3.3)

j

q

q

j

Figure 3.1: Curved thin-walled circular cross-section with global (𝑋 , 𝑌 , 𝑍) and local (𝜑 ∈ [−𝜓/2, 𝜓/2],
𝜃 ∈ [0, 2𝜋], 𝑧 ∈ [−𝑡/2, 𝑡/2]) coordinate systems.

The linear kinematic relations that satisfy the Love-Kirchhoff assumption are given by equations (3.4) to
(3.9) for membrane and plate in bending strains following the governing equations of the linear Sanders
thin shell theory [125], expressed in a toroidal coordinate system [101, 179].

Membrane strains:

𝜀M
𝜑 =

1
𝜉

(
𝑢,𝜑

𝑅
− 𝑣 sin(𝜃)

𝑅
+ 𝑤 cos(𝜃)

𝑅

)
(3.4)

𝜀M
𝜃 =

𝑣, 𝜃 + 𝑤
𝑟

(3.5)

𝛾M
𝜑𝜃 =

𝑢, 𝜃

𝑟
+ 1
𝜉

(
𝑣,𝜑

𝑅
+ 𝑢 sin(𝜃)

𝑅

)
(3.6)

and bending strains:

𝜀B
𝜑 = − 𝑧

( sin(𝜃)
(
𝑣 − 𝑤, 𝜃

)
𝑅𝑟𝜉

+
𝑤,𝜑𝜑 − 𝑢,𝜑 cos(𝜃)

(𝑅𝜉)2

)
(3.7)

𝜀B
𝜃 = − 𝑧

(𝑤, 𝜃 𝜃 − 𝑣, 𝜃
𝑟2

)
(3.8)
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𝛾B
𝜑𝜃 = − 𝑧

(
2𝑤, 𝜃 𝜑

𝑅𝑟𝜉
+

2𝑤,𝜑 sin(𝜃)
(𝑅𝜉)2 −

𝑣,𝜑 (1 + 2𝜉)
2𝑅𝑟𝜉2 −

(cos(𝜃)
𝑅𝑟𝜉

− 1
2𝑟2𝜉

)
𝑢, 𝜃

− 2𝑟2 sin(2𝜃) + (1 − 2𝜉)𝑅𝑟 sin(𝜃)
2(𝑅𝑟𝜉)2 𝑢

)
(3.9)

where:

𝜉 = 1 + 𝛼 cos(𝜃) (3.10)

𝛼 =
𝑟

𝑅
(3.11)

3.1.1 Variation of internal energy

The variation of internal energy is defined as the volume integral of the products of all stress components
by the respective virtual strains:

𝛿𝑈int =

∫
𝑉

(𝜎𝜑𝛿𝜀𝜑 + 𝜎𝜃𝛿𝜀𝜃 + 𝜏𝜑𝜃𝛿𝛾𝜑𝜃 )d𝑉 (3.12)

For an isotropic, linearly elastic material, the constitutive relations between stresses and strains are
expressed by means of the Young’s modulus 𝐸 , the shear modulus 𝐺 and the Poisson’s ratio 𝜇:

𝜎𝜑 =
𝐸

1 − 𝜇2 (𝜀𝜑 + 𝜇𝜀𝜃 ), 𝜎𝜃 =
𝐸

1 − 𝜇2 (𝜀𝜃 + 𝜇𝜀𝜑), 𝜏𝜑𝜃 = 𝐺𝛾𝜑𝜃 (3.13)

Substituting the GBT displacement functions in equations (3.1) to (3.3), the linear strain-displacement
kinematic relations in equations (3.4) to (3.9), and the constitutive relations in equation (3.13) into
equation (3.12), it is possible to rewrite the variation of the internal energy as:

𝛿𝑈int =

∞∑︁
𝑘=1

∞∑︁
𝑖=1

∫ +𝜓
2

−𝜓
2

(
𝑖𝑘𝐶1

𝑖𝑉,𝜑𝜑 (𝜑)𝑘𝛿𝑉,𝜑𝜑 (𝜑) + 𝑖𝑘𝐶2
𝑖𝑉 (𝜑)𝑘𝛿𝑉,𝜑𝜑 (𝜑) + 𝑖𝑘𝐶3

𝑖𝑉,𝜑𝜑 (𝜑)𝑘𝛿𝑉 (𝜑)

+ 𝑖𝑘𝐶4
𝑖𝑉 (𝜑)𝑘𝛿𝑉 (𝜑) + 𝑖𝑘𝐵 𝑖𝑉 (𝜑)𝑘𝛿𝑉 (𝜑) + 𝑖𝑘𝐷 𝑖𝑉,𝜑 (𝜑)𝑘𝛿𝑉,𝜑 (𝜑) + 𝑖𝑘𝐷1𝜇

𝑖𝑉 (𝜑)𝑘𝛿𝑉,𝜑𝜑 (𝜑)

+ 𝑖𝑘𝐷2𝜇
𝑖𝑉,𝜑𝜑 (𝜑)𝑘𝛿𝑉 (𝜑) + 𝑖𝑘𝐷3𝜇

𝑖𝑉 (𝜑)𝑘𝛿𝑉 (𝜑) + 𝑖𝑘𝐷4𝜇
𝑖𝑉 (𝜑)𝑘𝛿𝑉 (𝜑)

)
𝑅 𝑑𝜑 (3.14)

with the section properties

𝑖𝑘𝐶1 = 𝑄

∮
𝑖𝑢(𝜃)
𝑅𝜉

𝑘𝑢(𝜃)
𝑅

𝑟 𝑑𝜃 + 𝐾
∮

𝑖𝑢(𝜃) cos(𝜃) − 𝑖𝑤(𝜃)
(𝑅𝜉)2

𝑘𝑢(𝜃) cos(𝜃) − 𝑘𝑤(𝜃)
𝑅2𝜉

𝑟 𝑑𝜃 (3.15)

𝑖𝑘𝐶2 = 𝑄

∮
𝑖𝑤(𝜃) cos(𝜃) − 𝑖𝑣(𝜃) sin(𝜃)

𝑅𝜉

𝑘𝑢(𝜃)
𝑅

𝑟 𝑑𝜃

+ 𝐾

∮ sin(𝜃)
(
𝑖𝑤, 𝜃 (𝜃) − 𝑖𝑣(𝜃)

)
𝑅𝑟𝜉

𝑘𝑢(𝜃) cos(𝜃) − 𝑘𝑤(𝜃)
𝑅2𝜉

𝑟 𝑑𝜃 (3.16)

𝑖𝑘𝐶3 = 𝑘𝑖𝐶2 (3.17)
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𝑖𝑘𝐶4 = 𝑄

∮
𝑖𝑤(𝜃) cos(𝜃) − 𝑖𝑣(𝜃) sin(𝜃)

𝑅𝜉

𝑘𝑤(𝜃) cos(𝜃) − 𝑘𝑣(𝜃) sin(𝜃)
𝑅

𝑟 𝑑𝜃

+ 𝐾

∮ sin(𝜃)
(
𝑖𝑤, 𝜃 (𝜃) − 𝑖𝑣(𝜃)

)
𝑅𝑟𝜉

sin(𝜃)
(
𝑘𝑤, 𝜃 (𝜃) − 𝑘𝑣(𝜃)

)
𝑅𝑟

𝑟 𝑑𝜃 (3.18)

𝑖𝑘𝐵 = 𝑄

∮ 𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)
𝑟

𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤(𝜃)
𝑟

𝜉𝑟 𝑑𝜃

+ 𝐾

∮ 𝑖𝑣, 𝜃 (𝜃) − 𝑖𝑤, 𝜃 𝜃 (𝜃)
𝑟2

𝑘𝑣, 𝜃 (𝜃) − 𝑘𝑤, 𝜃 𝜃 (𝜃)
𝑟2 𝜉𝑟 𝑑𝜃 (3.19)

𝑖𝑘𝐷 = 𝐺𝑡

∮ ( 𝑖𝑢, 𝜃 (𝜃)
𝑟

+
𝑖𝑣(𝜃)
𝑅𝜉

+
𝑖𝑢(𝜃) sin(𝜃)

𝑅𝜉

) ( 𝑘𝑢, 𝜃 (𝜃)
𝑟

+
𝑘𝑣(𝜃)
𝑅𝜉

+
𝑘𝑢(𝜃) sin(𝜃)

𝑅𝜉

)
𝜉𝑟 𝑑𝜃

+ 𝐺𝑡3

12

∮ (
−

2 𝑖𝑤, 𝜃 (𝜃)
𝑅𝑟𝜉

− 2 𝑖𝑤(𝜃) sin(𝜃)
(𝑅𝜉)2 +

𝑖𝑣(𝜃) (1 + 2𝜉)
2𝑅𝑟𝜉2 + 𝐹1

𝑖𝑢, 𝜃 (𝜃) + 𝐹2
𝑖𝑢(𝜃)

)
×

(
−

2 𝑘𝑤, 𝜃 (𝜃)
𝑅𝑟𝜉

− 2 𝑘𝑤(𝜃) sin(𝜃)
(𝑅𝜉)2 +

𝑘𝑣(𝜃) (1 + 2𝜉)
2𝑅𝑟𝜉2 + 𝐹1

𝑘𝑢, 𝜃 (𝜃) + 𝐹2
𝑘𝑢(𝜃)

)
𝜉𝑟 𝑑𝜃 (3.20)

𝑖𝑘𝐷1𝜇 = 𝜇𝑄

∮ 𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)
𝑟

𝑘𝑢(𝜃)
𝑅

𝑟 𝑑𝜃

+ 𝜇𝐾

∮ 𝑖𝑣, 𝜃 (𝜃) − 𝑖𝑤, 𝜃 𝜃 (𝜃)
𝑟2

𝑘𝑢(𝜃) cos(𝜃) − 𝑘𝑤(𝜃)
𝑅2𝜉

𝑟 𝑑𝜃 (3.21)

𝑖𝑘𝐷2𝜇 = 𝑘𝑖𝐷1𝜇 (3.22)

𝑖𝑘𝐷3𝜇 = 𝜇𝑄

∮ 𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)
𝑟

𝑘𝑤(𝜃) cos(𝜃) − 𝑘𝑣(𝜃) sin(𝜃)
𝑅

𝑟 𝑑𝜃

+ 𝜇𝐾

∮ 𝑖𝑣, 𝜃 (𝜃) − 𝑖𝑤, 𝜃 𝜃 (𝜃)
𝑟2

sin(𝜃)
(
𝑘𝑤, 𝜃 (𝜃) − 𝑘𝑣(𝜃)

)
𝑅𝑟

𝑟 𝑑𝜃 (3.23)

𝑖𝑘𝐷4𝜇 = 𝑘𝑖𝐷3𝜇 (3.24)

where:

𝐹1 =
cos(𝜃)
𝑅𝑟𝜉

− 1
2𝑟2𝜉

(3.25)

𝐹2 =
2𝑟2 sin(2𝜃) + (1 − 2𝜉)𝑅𝑟 sin(𝜃)

2(𝑅𝑟𝜉)2 (3.26)

𝐾 =
𝐸𝑡3

12(1 − 𝜇2)
(3.27)

𝑄 =
𝐸𝑡

(1 − 𝜇2)
(3.28)

The coefficients 𝑖𝑘𝐶1, 𝑖𝑘𝐵 and 𝑖𝑘𝐷 represent the section’s warping, transverse bending, and shear stiff-
nesses, respectively. The additional stiffness coefficients 𝑖𝑘𝐶2, 𝑖𝑘𝐶3 and 𝑖𝑘𝐶4 are the results of additional
coupling between warping and transverse deformations due to the effect of the toroidal to cross-sectional
radius ratio 𝛼 in equation (3.11) i.e., the larger the radius ratio the higher the contribution of these stiffness
coefficients. The coefficients 𝑖𝑘𝐷1𝜇, 𝑖𝑘𝐷2𝜇, 𝑖𝑘𝐷3𝜇 and 𝑖𝑘𝐷4𝜇 are an additional shear stiffness due to the
Poisson effect and the radius ratio.
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3.1.2 Variation of the external energy

The virtual work of external forces can be formulated by following the principle of separation of variables
in the longitudinal and transverse directions. For a general external load 𝑝(𝜑, 𝜃), applied at the mid-
surface of a plate element consisting of three components 𝑝𝜑 , 𝑝𝜃 and 𝑝𝑧 in the local coordinate system
(𝜑, 𝜃, 𝑧), the external virtual work can be defined as the load component times the corresponding virtual
displacement as:

𝛿𝑈ext = −
∫ +𝜓

2

−𝜓
2

∮ (
𝑝𝜑𝛿𝑢 + 𝑝𝜃𝛿𝑣 + 𝑝𝑧𝛿𝑤

)
𝜉𝑅𝑟 𝑑𝜃 𝑑𝜑 (3.29)

Similar to the displacements, the external general load functions 𝑝𝜑 (𝜑, 𝜃), 𝑝𝜃 (𝜑, 𝜃) and 𝑝𝑧 (𝜑, 𝜃) can
be expressed as a product of two functions which defines the cross-sectional 𝑞(𝜃) and longitudinal 𝑓 (𝜑)
load distribution:

𝑝𝜑 (𝜑, 𝜃) = 𝑓𝜑 (𝜑)𝑞𝜑 (𝜃), 𝑝𝜃 (𝜑, 𝜃) = 𝑓𝜃 (𝜑)𝑞𝜃 (𝜃), 𝑝𝑧 (𝜑, 𝜃) = 𝑓𝑧 (𝜑)𝑞𝑧 (𝜃) (3.30)

Substituting equation (3.30) and the GBT displacement functions in equations (3.1) to (3.3) into equation
(3.29) the 𝛿𝑈ext can be expressed as:

𝛿𝑈ext = −
∞∑︁
𝑘=1

∫ +𝜓
2

−𝜓
2

∮ (
𝑓𝜑 (𝜑)𝑞𝜑 (𝜃)𝑘𝑢(𝜃)𝑘𝛿𝑉,𝜑 (𝜑) + 𝑓𝜃 (𝜑)𝑞𝜃 (𝜃)𝑘𝑣(𝜃)𝑘𝛿𝑉 (𝜑)+

𝑓𝑧 (𝜑)𝑞𝑧 (𝜃)𝑘𝑤(𝜃)𝑘𝛿𝑉 (𝜑)
)
𝜉𝑅𝑟 𝑑𝜃 𝑑𝜑 (3.31)

Separating the cross-sectional integration and integrating by parts, equation (3.31) can be rewritten as:

𝛿𝑈ext = −
∞∑︁
𝑘=1

( ∫ +𝜓
2

−𝜓
2

(
𝑓𝜑,𝜑 (𝜑)𝑘𝑞𝜑+ 𝑓𝜃 (𝜑)𝑘𝑞𝜃+ 𝑓𝑧 (𝜑)𝑘𝑞𝑧

)
𝑘𝛿𝑉 (𝜑) 𝑑𝜑+ 𝑓𝜑 (𝜑)𝑘𝑞𝜑𝑘𝛿𝑉 (𝜑)

��� +𝜑2−𝜑
2

)
(3.32)

Hence, the modal load decompositions 𝑘𝑞𝜑 , 𝑘𝑞𝜃 and 𝑘𝑞𝑧 are achieved by the inner product of the
deformation modes and the functions 𝑞𝜑 (𝜃), 𝑞𝜃 (𝜃) and 𝑞𝑧 (𝜃) of the external load:

𝑘𝑞𝜑 = −
∮

𝑞𝜑 (𝜃)𝑘𝑢(𝜃) 𝜉𝑅𝑟 𝑑𝜃 (3.33)

𝑘𝑞𝜃 =

∮
𝑞𝜃 (𝜃)𝑘𝑣(𝜃) 𝜉𝑅𝑟 𝑑𝜃 (3.34)

𝑘𝑞𝑧 =

∮
𝑞𝑧 (𝜃)𝑘𝑤(𝜃) 𝜉𝑅𝑟 𝑑𝜃 (3.35)
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3.2 Deformation modes

In this section, the shell-type deformation modes for a thin-walled curved CHS are formulated. The
relationship between the longitudinal 𝑢(𝜃), tangential 𝑣(𝜃) and radial 𝑤(𝜃) displacement functions are
derived from Vlasov’s beam theory assumptions (A6) of (i) null membrane transverse strain 𝜀M

𝜃
= 0 in

equation (3.5) and (ii) null membrane in-plane shear strain 𝛾M
𝜑𝜃

= 0 in equation (3.6). This gives:

𝑣(𝜃) = −
𝑢, 𝜃 (𝜃)
𝛼

𝜉 − 𝑢(𝜃) sin(𝜃) (3.36)

𝑤(𝜃) = −𝑣, 𝜃 (𝜃) (3.37)

Here, two independent sets of orthogonal trigonometric functions, which are assumed by Schardt [131]
for a straight CHS member, are adopted to approximate the longitudinal displacement 𝑢(𝜃) after dividing
it by 𝑅 to account for the first derivative of the amplitude function in equation (3.1). After determining tan-
gential 𝑣(𝜃) and radial 𝑤(𝜃) displacements from equations (3.36) and (3.37) the shell-type displacement
modes 𝑘 are defined by:

𝑚 ≥ 1, 𝑘 = 2𝑚:

𝑘𝑢(𝜃) = 𝛼 sin(𝑚𝜃) (3.38)
𝑘𝑣(𝜃) = −𝑚 cos (𝑚𝜃) − 𝛼 cos (𝜃) 𝑚 cos (𝑚𝜃) − 𝛼 sin (𝑚𝜃) sin (𝜃) (3.39)
𝑘𝑤(𝜃) = −𝑚2 sin (𝑚𝜃) − 𝛼 cos (𝜃) 𝑚2 sin (𝑚𝜃) + 𝛼 sin (𝑚𝜃) cos (𝜃) (3.40)

𝑚 ≥ 1, 𝑘 = 2𝑚 + 1:

𝑘𝑢(𝜃) = −𝛼 cos(𝑚𝜃) (3.41)
𝑘𝑣(𝜃) = −𝑚 sin (𝑚𝜃) − 𝛼 cos (𝜃) 𝑚 sin (𝑚𝜃) + 𝛼 cos (𝑚𝜃) sin (𝜃) (3.42)
𝑘𝑤(𝜃) = −𝑚2 sin (𝑚𝜃) − 𝛼 cos (𝜃) 𝑚2 sin (𝑚𝜃) + 𝛼 sin (𝑚𝜃) cos (𝜃) (3.43)

Cross section 
Straight pipe

= 0.01 
= 0.1
= 0.5
= 1

Figure 3.2: Radial displacement for deformation mode 5 or ovalization, 5𝑤(𝜃).
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3.2: Deformation modes

The last two summations in the transverse displacements are dependent on the radius ratio 𝛼. For example,
in Figure 3.2 for a smaller value of the radius ratio, the contribution of these summations becomes less
significant, and the deformation modes become more similar to a straight pipe. Here, the classification
and type of the deformation modes considered are the same as the ones used in Section 2.2.5.

3.2.1 Mode coupling

The curved GBT coefficient matrices have off-diagonal terms which arise from deformation mode cou-
pling in addition to the conventional to non-conventional deformation modes coupling within the same
mode index as presented in Section 2.2.5. Substituting equations (3.38) to (3.43) into equations (3.15)
to (3.24) and performing a numerical integration, the possible mode couplings are identified for each
section property. Figures 3.3 to 3.6 show the mode couplings between 𝑡, 𝑎 and the first six conventional
GBT deformation modes as a sample in a tabular form (matrix). In these figures, the non-conventional
modes are not shown since their coupling behavior is the same as the conventional ones. The empty cells
in the tables make evident that the coupling between modes 𝑖 and 𝑘 is zero.

𝑡 𝑎 1 2 3 4 5 6

𝑡

𝑎 𝑎𝑎𝐶1
𝑎1𝐶1

𝑎3𝐶1
𝑎5𝐶1

1 1𝑎𝐶1
11𝐶1

13𝐶1
15𝐶1

2 22𝐶1
24𝐶1

26𝐶1

3 3𝑎𝐶1
31𝐶1

33𝐶1
35𝐶1

4 42𝐶1
44𝐶1

46𝐶1

5 5𝑎𝐶1
51𝐶1

53𝐶1
55𝐶1

6 62𝐶1
64𝐶1

66𝐶1

𝑡 𝑎 1 2 3 4 5 6

𝑡 𝑡2𝐶2
𝑡4𝐶2

𝑡6𝐶2

𝑎 𝑎1𝐶2
𝑎3𝐶2

𝑎5𝐶2

1

2 22𝐶2
24𝐶2

26𝐶2

3 31𝐶2
33𝐶2

35𝐶2

4 42𝐶2
44𝐶2

46𝐶2

5 5𝑎𝐶2
51𝐶2

53𝐶2
55𝐶2

6 62𝐶2
64𝐶2

66𝐶2

Figure 3.3: List of possible mode couplings for stiffness coefficients 𝑖𝑘𝐶1 and 𝑖𝑘𝐶2.

The 𝑖 and 𝑘 indexes of the stiffness coefficients define the relationship between two deformation modes.
For example, if 𝑖𝑘𝐶1 exists then the indexes can be interpreted as the forces in mode 𝑘 will cause a
displacement in mode 𝑖.

In all section properties, it can be observed that mode 𝑎 is only coupled with odd modes, and mode 𝑡 is
only coupled with even modes while no coupling exists between even and odd modes. Section property
coefficients 𝑖𝑘𝐶3, 𝑖𝑘𝐷2𝜇 and 𝑖𝑘𝐷4𝜇 are not shown here since they are the transpose of 𝑖𝑘𝐶2, 𝑖𝑘𝐷1𝜇 and
𝑖𝑘𝐷3𝜇, respectively. In the case of stiffness coefficient 𝑖𝑘𝐵, the integral value of the coefficients are shown
symbolically since it was easy enough to perform analytical (symbolic) integration.
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Chapter 3: Formulation of GBT for pipe bends

𝑡 𝑎 1 2 3 4 5 6

𝑡

𝑎 𝑎𝑎𝐵

1

2

3

4 44𝐵 46𝐵

5 55𝐵

6 64𝐵 66𝐵

𝑎𝑎𝐵 =
2𝜋 𝑄
𝑟

(3.44)

44𝐵 = 55𝐵 =
144𝜋

(
𝑅2 + 2 𝑟2) 𝐾
𝑅2𝑟3 (3.45)

46𝐵 = 64𝐵 =
144𝜋

(
10 𝑅2 + 3 𝑟2) 𝐾
𝑅3𝑟2 (3.46)

66𝐵 =
288𝜋

(
18 𝑅2 + 31 𝑟2) 𝐾
𝑅2𝑟3 (3.47)

Figure 3.4: List of possible mode couplings for stiffness coefficients 𝑖𝑘𝐵 and the symbolic integral value
of the coefficients.

𝑡 𝑎 1 2 3 4 5 6

𝑡 𝑡𝑡𝐶4
𝑡2𝐶4

𝑡4𝐶4
𝑡6𝐶4

𝑎 𝑎𝑎𝐶4
𝑎3𝐶4

𝑎5𝐶4

1

2 2𝑡𝐶4
22𝐶4

24𝐶4
26𝐶4

3 3𝑎𝐶4
33𝐶4

35𝐶4

4 4𝑡𝐶4
42𝐶4

44𝐶4
46𝐶4

5 5𝑎𝐶4
53𝐶4

55𝐶4

6 6𝑡𝐶4
62𝐶4

64𝐶4
66𝐶4

𝑡 𝑎 1 2 3 4 5 6

𝑡 𝑡𝑡𝐷 𝑡4𝐷 𝑡6𝐷

𝑎 𝑎𝑎𝐷 𝑎1𝐷 𝑎5𝐷

1 1𝑎𝐷 11𝐷 15𝐷

2

3

4 4𝑡𝐷 44𝐷 46𝐷

5 5𝑎𝐷 51𝐷 55𝐷

6 6𝑡𝐷 64𝐷 66𝐷

Figure 3.5: List of possible mode couplings for stiffness coefficients 𝑖𝑘𝐶4 and 𝑖𝑘𝐷.

3.3 Finite element formulation

In the longitudinal direction, a finite element method is implemented with direct interpolation of the
deformation mode amplitude functions. For the approximation of the modal amplitude, 𝑘𝑉 (𝜑) corre-
sponding to the axial extension mode 𝑘 = 1, four node Lagrange cubic polynomials are used. Classic

53



3.3: Finite element formulation

𝑡 𝑎 1 2 3 4 5 6

𝑡

𝑎 𝑎1𝐷1

1

2

3

4 44𝐷1
46𝐷1

5 5𝑎𝐷1
51𝐷1

55𝐷1

6 64𝐷1
66𝐷1

𝑡 𝑎 1 2 3 4 5 6

𝑡

𝑎 𝑎3𝐷3
𝑎5𝐷3

1

2

3

4 44𝐷3
46𝐷3

5 55𝐷3

6 64𝐷3
66𝐷3

Figure 3.6: List of possible mode couplings for stiffness coefficients 𝑖𝑘𝐷1𝜇 and 𝑖𝑘𝐷3𝜇.

Hermite cubic polynomials are applied to the remaining shell-type and the non-conventional deformation
modes. The longitudinal modal amplitude function 𝑘𝑉 (𝜑) and it’s variation 𝑘𝛿𝑉 (𝜑) can be defined as:

𝑘𝑉 (𝜑) = 𝑘 {𝑇𝜑} 𝑘 [𝑆ℎ] 𝑘 {𝜗} (3.48)
𝑘𝛿𝑉 (𝜑) = 𝑘 {𝑇𝜑} 𝑘 [𝑆ℎ] (3.49)

where {𝑇𝜑} is the variable vector, [𝑆ℎ] is the completeness coefficient matrices of either the cubic Hermite
[𝑆ℎ𝐻 ] or Lagrange [𝑆ℎ𝐿] shape functions, and {𝜗} is the vector of the beam’s nodal amplitude.

{𝑇𝜑} =
{
𝜑3 𝜑2 𝜑 1

}
(3.50)

[𝑆ℎ𝐻 ] =



2
𝜓3

1
𝜓2 − 2

𝜓3
1
𝜓2

0 − 1
2𝜓

0
1

2𝜓

− 3
2𝜓

−1
4

3
2𝜓

−1
4

1
2

𝜓

8
1
2

−𝜓
8


and [𝑆ℎ𝐿] =



− 9
2𝜓3

27
2𝜓3 − 27

2𝜓3
9

2𝜓3

9
4𝜓2 − 9

4𝜓2 − 9
4𝜓2

9
4𝜓2

1
8𝜓

− 27
8𝜓

27
8𝜓

− 1
8𝜓

− 1
16

9
16

9
16

− 1
16


(3.51)

{𝜗𝐻 }𝑇 =

{
𝑉 ( −𝜓

2
) 𝑉,𝜑 (

−𝜓
2

) 𝑉 (𝜓
2
) 𝑉,𝜑 (

𝜓

2
)

}
and

{𝜗𝐿}𝑇 =

{
𝑉 ( −𝜓

2
) 𝑉 ( −𝜓

6
) 𝑉 (𝜓

6
) 𝑉 (𝜓

2
)

}
(3.52)
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Chapter 3: Formulation of GBT for pipe bends

The GBT curved element stiffness matrix is derived by substituting equations (3.48) and (3.49) into the
variation of the strain energy in equation( 3.14). This gives:

𝛿𝑈int =

∞∑︁
𝑘=1

∞∑︁
𝑖=1

(
𝑖𝑘𝐶1

𝑖𝑘 [V5] +
(
𝑖𝑘𝐶2 + 𝑖𝑘𝐷1𝜇

)
𝑖𝑘 [V6] +

(
𝑖𝑘𝐶3 + 𝑖𝑘𝐷2𝜇

)
𝑖𝑘 [V6]𝑇

+
(
𝑖𝑘𝐶4 + 𝑖𝑘𝐵 + 𝑖𝑘𝐷3𝜇 + 𝑖𝑘𝐷4𝜇

)
𝑖𝑘 [V7] + 𝑖𝑘𝐷 𝑖𝑘 [V8]

)
𝑖 {𝜗} (3.53)

where:

𝑖𝑘 [V5] = 𝑘 [𝑆ℎ]𝑇
∫ +𝜓

2

−𝜓
2

𝑘 {𝑇𝜑}𝑇,𝜑𝜑
𝑖 {𝑇𝜑},𝜑𝜑 𝑅 𝑑𝜑

𝑖 [𝑆ℎ] (3.54)

𝑖𝑘 [V6] = 𝑘 [𝑆ℎ]𝑇
∫ +𝜓

2

−𝜓
2

𝑘 {𝑇𝜑}𝑇,𝜑𝜑
𝑖 {𝑇𝜑} 𝑅 𝑑𝜑 𝑖 [𝑆ℎ] (3.55)

𝑖𝑘 [V7] = 𝑘 [𝑆ℎ]𝑇
∫ +𝜓

2

−𝜓
2

𝑘 {𝑇𝜑}𝑇 𝑖 {𝑇𝜑} 𝑅 𝑑𝜑 𝑖 [𝑆ℎ] (3.56)

𝑖𝑘 [V8] = 𝑘 [𝑆ℎ]𝑇
∫ +𝜓

2

−𝜓
2

𝑘 {𝑇𝜑}𝑇,𝜑 𝑖 {𝑇𝜑},𝜑 𝑅 𝑑𝜑 𝑖 [𝑆ℎ] (3.57)

Due to the coupling between deformation mode 𝑖 and 𝑘 , there are three possible outcomes for the equations
(3.54) to (3.57).

Case 1: if 𝑖 ≠ 1 and 𝑘 ≠ 1 the integration in equations (3.54) to (3.57) will be based on the Hermite
shape function. This gives:

𝑖𝑘 [V5] =
𝑅

𝜓3



12 6𝜓 −12 6𝜓

4𝜓2 −6𝜓 2𝜓2

12 −6𝜓

sym. 4𝜓2


and 𝑖𝑘 [V6] =

𝑅

30𝜓



−36 −3𝜓 36 −3𝜓

−33𝜓 −4𝜓2 3𝜓 𝜓2

36 3𝜓 −36 3𝜓

−3𝜓 𝜓2 33𝜓 −4𝜓2


(3.58)

𝑖𝑘 [V7] =
𝑅

420



156𝜓 22𝜓2 54𝜓 −13𝜓2

4𝜓3 13𝜓2 −3𝜓3

156𝜓 −22𝜓2

sym. 4𝜓3


and 𝑖𝑘 [V8] =

𝑅

30𝜓



36 3𝜓 −36 3𝜓

4𝜓2 −3𝜓 −𝜓2

36 −3𝜓

sym. 4𝜓2


(3.59)

Case 2: if 𝑖 = 1 and 𝑘 = 1 the integration in equations (3.54) and (3.57) will be based on the Lagrange
shape function. Here, [V6] and [V7] are ignored since the corresponding section stiffnesses are zero.
Whereas the matrices [V5] and [V8] are computed as:
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3.3: Finite element formulation

11 [V5] =
𝑅

40𝜓



148 −189 54 −13

423 −297 54

432 −189

sym. 148


and 11 [V8] =

𝑅𝜓

1680



128 99 −36 19

648 −81 −36

648 99

−3 sym. 128


(3.60)

Case 3: if 𝑖 = 1 and 𝑘 ≠ 1 the integration in equations (3.54) and (3.57) will be based on the Hermite
shape function for mode 𝑘 and the Lagrange shape function for mode 𝑖. This gives:

1𝑘 [V5] =
𝑅

4𝜓2



18 −18 −18 18

13𝜓 −9𝜓 −9𝜓 5𝜓

−18 18 18 −18

5𝜓 −9𝜓 −9𝜓 13𝜓


and 1𝑘 [V6] =

𝑅

20𝜓



−11 −27 27 11

−8𝜓 −21𝜓 6𝜓 3𝜓

11 27 −27 −11

−3𝜓 −6𝜓 21𝜓 8𝜓


(3.61)

1𝑘 [V7] =
𝑅𝜓

840



96 279 36 9

6𝜓 45𝜓 18𝜓 𝜓

9 36 279 96

−𝜓 −18𝜓 −45𝜓 −6𝜓


and 1𝑘 [V8] =

𝑅

120



−6 −54 −54 −6

10𝜓 9𝜓 −18𝜓 −𝜓

6 54 54 6

−𝜓 −18𝜓 9𝜓 10𝜓


(3.62)

In this case, the order of 𝑖 and 𝑘 is important for 𝑖𝑘 [V6]. If 𝑖 ≠ 1 and 𝑘 = 1 then 𝑖1 [V6] will not be the
transpose of the above expression. Instead it becomes:

𝑖1 [V6] =
𝑅

120



−114 −10𝜓 −6 𝜓

54 −9𝜓 −54 18𝜓

54 18𝜓 −54 −9𝜓

6 𝜓 114 −10𝜓


(3.63)

The sub-matrix components 𝑖𝑘 [𝑘] of the element stiffness matrix are extracted from equation (3.53) as:

𝑖𝑘 [𝑘] = 𝑖𝑘𝐶1
𝑖𝑘 [V5] +

(
𝑖𝑘𝐶2 + 𝑖𝑘𝐷1𝜇

)
𝑖𝑘 [V6] +

(
𝑖𝑘𝐶3 + 𝑖𝑘𝐷2𝜇

)
𝑖𝑘 [V6]𝑇

+
(
𝑖𝑘𝐶4 + 𝑖𝑘𝐵 + 𝑖𝑘𝐷3𝜇 + 𝑖𝑘𝐷4𝜇

)
𝑖𝑘 [V7] + 𝑖𝑘𝐷 𝑖𝑘 [V8] (3.64)

In equation (3.66), the element mass matrix [𝐾]𝑒 which is built based on the sub-matrix in equation
(3.64) is shown following the natural order of GBT deformation modes in equation (3.65).

{𝑑}𝑇 =

{
𝑡 {𝜗} , 𝑎 {𝜗} , 1 {𝜗} , 2 {𝜗} ,

V
2 {𝜗} ,

U
2 {𝜗} , 3 {𝜗} ,

V
3 {𝜗} ,

U
3 {𝜗} , 4 {𝜗} , . . .

}
(3.65)
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[𝐾
]𝑒

=

                                                  𝑡
𝑡
[𝑘
]

[0
]

[0
]

𝑡
2
[𝑘
]

𝑡
V 2
[𝑘
]

𝑡
U 2
[𝑘
]

[0
]

[0
]

[0
]

𝑡
4
[𝑘
]

𝑡
V 4
[𝑘
]

𝑡
U 4
[𝑘
]

[0
]

[0
]

[0
]

.
.
.

𝑎
𝑎
[𝑘
]

𝑎
1
[𝑘
]

[0
]

[0
]

[0
]

𝑎
3
[𝑘
]

𝑎
V 3
[𝑘
]

𝑎
U 3
[𝑘
]

[0
]

[0
]

[0
]

𝑎
5
[𝑘
]

𝑎
V 5
[𝑘
]

𝑎
U 5
[𝑘
]
.
.
.

11
[𝑘
]

[0
]

[0
]

[0
]

13
[𝑘
]

1
V 3
[𝑘
]

1
U 3
[𝑘
]

[0
]

[0
]

[0
]

15
[𝑘
]

1
V 5
[𝑘
]

1
U 5
[𝑘
]

.
.
.

22
[𝑘
]

2
V 2
[𝑘
]

2
U 2
[𝑘
]

[0
]

[0
]

[0
]

24
[𝑘
]

2
V 4
[𝑘
]

2
U 4
[𝑘
]

[0
]

[0
]

[0
]

.
.
.

V 2
V 2
[𝑘
]

V 2
U 2
[𝑘
]

[0
]

[0
]

[0
]

V 24
[𝑘
]

V 2
V 4
[𝑘
]

V 2
U 4
[𝑘
]

[0
]

[0
]

[0
]

.
.
.

U 2
U 2
[𝑘
]

[0
]

[0
]

[0
]

U 24
[𝑘
]

U 2
V 4
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Chapter 3: Formulation of GBT for pipe bends

In equation (3.67), the bandwidth of the element stiffness matrix is reduced by half by optimizing the
order of the deformation modes in such a way that the modes which have coupling are arranged together.
This order of deformation modes can be clearly seen on the corresponding generalized modal amplitude
vector {𝑑} in equation (3.68).

{𝑑}𝑇 =

{
𝑎 {𝜗} , 1 {𝜗}, 3 {𝜗},

V
3 {𝜗},

U
3 {𝜗}, . . . , 𝑡 {𝜗} , 2 {𝜗},

V
2 {𝜗},

U
2 {𝜗}, 4 {𝜗}, . . .

}
(3.68)

3.4 Stress resultants

The stress resultants for membrane forces, shear forces, and bending moment are formulated for a curved
GBT member. Here, since the non-conventional deformation modes are considered, the stress resultants
𝑁𝜃 and 𝑁𝜑𝜃 are directly derived from the membrane stresses. The complete stress resultants, which are
forces per unit length, and the stress moments, which are moments per unit length, are derived as:

𝑁𝜑 =

∫ +𝑡
2

−𝑡
2

𝜎𝜑𝜑 𝑑𝑧

= 𝑄

∞∑︁
𝑘=1

( 𝑘𝑢(𝜃)
𝑅𝜉

𝑉,𝜑𝜑 (𝜑) +
( 𝑘𝑤(𝜃) cos(𝜃) − 𝑘𝑣(𝜃) sin(𝜃)

𝑅𝜉
+ 𝜇

𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤(𝜃)
𝑟

)
𝑉 (𝜑)

)
(3.69)

𝑁𝜃 =

∫ +𝑡
2

−𝑡
2

𝜎𝜃 𝜃 𝑑𝑧

= 𝑄

∞∑︁
𝑘=1

(( 𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤(𝜃)
𝑟

+ 𝜇
𝑘𝑤(𝜃) cos(𝜃) − 𝑘𝑣(𝜃) sin(𝜃)

𝑅𝜉

)
𝑉 (𝜑) + 𝜇

𝑘𝑢(𝜃)
𝑅𝜉

𝑉,𝜑𝜑 (𝜑)
)

(3.70)

𝑁𝜑𝜃 =

∫ +𝑡
2

−𝑡
2

𝜏𝜑𝜃 𝑑𝑧 = 𝐺𝑡

∞∑︁
𝑘=1

( 𝑘𝑢, 𝜃 (𝜃)
𝑟

+
𝑘𝑣(𝜃) + 𝑘𝑢(𝜃) sin(𝜃)

𝑅𝜉

)
𝑉,𝜑 (𝜑) (3.71)

𝑀𝜑 =

∫ +𝑡
2

−𝑡
2

𝜎𝜑𝜑𝑧 𝑑𝑧 = 𝐾

∞∑︁
𝑘=1

( 𝑘𝑢(𝜃) cos(𝜃) − 𝑘𝑤(𝜃)
(𝑅𝜉)2 𝑉,𝜑𝜑 (𝜑)

+
( sin(𝜃)

(
𝑘𝑤, 𝜃 (𝜃) − 𝑘𝑣(𝜃)

)
𝑅𝑟𝜉

+ 𝜇
𝑘𝑣, 𝜃 (𝜃) − 𝑘𝑤, 𝜃 𝜃 (𝜃)

𝑟2

)
𝑉 (𝜑)

)
(3.72)

𝑀𝜃 =

∫ +𝑡
2

−𝑡
2

𝜎𝜃 𝜃 𝑧 𝑑𝑧 = 𝐾

∞∑︁
𝑘=1

(( 𝑘𝑣, 𝜃 (𝜃) − 𝑘𝑤, 𝜃 𝜃 (𝜃)
𝑟2 + 𝜇

sin(𝜃)
(
𝑘𝑤, 𝜃 (𝜃) − 𝑘𝑣(𝜃)

)
𝑅𝑟𝜉

)
𝑉 (𝜑)

+ 𝜇
𝑘𝑢(𝜃) cos(𝜃) − 𝑘𝑤(𝜃)

(𝑅𝜉)2 𝑉,𝜑𝜑 (𝜑)
)

(3.73)
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3.5: Numerical examples

𝑀𝜑𝜃 =

∫ +𝑡
2

−𝑡
2

𝜏𝜑𝜃 𝑧 𝑑𝑧

=
𝐺𝑡3

12

∞∑︁
𝑘=1

(
−

2𝑘𝑤, 𝜃 (𝜃)
𝑅𝑟𝜉

− 2𝑘𝑤(𝜃) sin(𝜃)
(𝑅𝜉)2 +

𝑘𝑣(𝜃) (1 + 2𝜉)
2𝑅𝑟𝜉2 + 𝐹1

𝑘𝑢, 𝜃 (𝜃) + 𝐹2
𝑘𝑢(𝜃)

)
𝑉,𝜑 (𝜑)

(3.74)

Due to the Love-Kirchhoff assumption the shear stress resultants 𝑄𝜑 and 𝑄 𝜃 are obtained from equilib-
rium conditions and are given by [179].

𝑄𝜑 =
𝑀𝜑𝜃,𝜃

𝑟
+
𝑀𝜑𝜑,𝜑 − 2 sin(𝜃)𝑀𝜑𝜃

𝑅𝜉
(3.75)

𝑄 𝜃 =
𝑀𝜃 𝜃, 𝜃

𝑟
+
𝑀𝜑𝜃,𝜑 + sin(𝜃)

(
𝑀𝜑𝜑 − 𝑀𝜃 𝜃

)
𝑅𝜉

(3.76)

3.5 Numerical examples

In this section, numerical examples are presented for curved thin-walled circular pipes with various bend
angles, boundary conditions, and load cases. All examples are compared with equivalent shell finite
element models using ANSYS software [10]. These models have been developed using quadrilateral
elements with 6 DoF per node which are based on Reissner-Mindlin’s kinematic assumption with linear
interpolation functions as implemented in the software ANSYS under the name SHELL 181. The element
sizes used for the shell element models are approximately 40 × 40 mm for the first two examples and
20 × 20 mm for the last one.

3.5.1 In-plane bending

In this example, a cantilever pipe bend is considered with a radius ratio of 𝛼 =
1
12

and a bend angle of

𝜓 =
𝜋

2
. As shown in Figure 3.7, the free end of the pipe is loaded with a uniform line load 𝑞 distributed

around the perimeter of the pipe. Here, the steps involved in the GBT analysis are the same as the ones
presented in the previous chapter.

Therefore, as a first step, the line load 𝑞 was transformed into local coordinates, 𝑘𝑞𝜑 , 𝑘𝑞𝜃 , 𝑘𝑞𝑧 , whereas
the longitudinal component 𝑘𝑞𝜑 is zero in this case (equations (3.77) to (3.79)). The load contribution
in each mode 𝑘 is then determined by using equations (3.80) and (3.81) as shown in Table 3.1. Only the
in-plane bending mode 3, the ovalization mode 5, and their respective shear-v modes are associated with
the external load. The longitudinal integration in equation (3.32) is not necessary in this case since the
load is applied only at the tip of the cantilever.
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Figure 3.7: In-plane loading of a circular section cantilever arch beam.
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Figure 3.8: Distributed load in the local
coordinate system.

The external load 𝑞 in Figure 3.8 is expressed in the
local coordinate system in

[ N
mm

]
:

𝑞𝜑 (𝜃) = 0 (3.77)

𝑞𝜃 (𝜃) = 𝑞 sin(𝜃) (3.78)

𝑞𝑧 (𝜃) = −𝑞 cos(𝜃) (3.79)

Mode 𝑘 𝑘𝑞𝜃 [N] 𝑘𝑞𝑧 [N]

3 −𝑟𝜋𝑞 −𝑟𝜋𝑞
V
3 −𝑟𝜋𝑞 0

5 −3𝑟2𝜋𝑞

2𝑅
−3𝑟2𝜋𝑞

2𝑅
V
5 −3𝑟2𝜋𝑞

2𝑅
0

Table 3.1: External load modal decompo-
sition.

Substituting equations (3.78) and (3.79) into equations
(3.34) and (3.35) the modal decomposition of the external
load can be calculated as:

𝑘𝑞𝜃 =

∫ 2𝜋

0
𝑞 sin(𝜃) 𝑘𝑣(𝜃) 𝑟𝑑𝜃 (3.80)

𝑘𝑞𝑧 =

∫ 2𝜋

0
−𝑞 cos(𝜃) 𝑘𝑤(𝜃) 𝑟𝑑𝜃 (3.81)
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Here, only the odd deformation modes are selected for the GBT analysis since the even modes neither
have any applied force nor are they coupled with the odd modes as explained in section 3.2.1. The number
of odd modes to be used is decided by performing a convergence test.

In the next step of the GBT analysis, the element stiffness matrix [𝐾]𝑒 and external force vector {𝐹}𝑒,
used to calculate the generalized modal amplitude vector {𝑑}𝑒, are built based on the finite element
formulation presented in Section 3.3 for the selected number and types of GBT deformation modes.

In Table 3.2, the solution convergence of the GBT analysis is presented starting from consideration of
only RB modes which is equivalent to an Euler-Bernoulli beam to shear deformable GBT model with LS
modes. In the table, the maximum tip displacement refers to the local radial displacement 𝑤. Here, the
significance of the shear-u modes can be seen as it improves the classical GBT displacement results from
about 80 % to less than 6 %. This observation has also been reported for square hollow arch sections in
[111]. In this example, modes up to 11 are considered for the analysis since the changes in displacement
and stress fields are insignificant for the additional number of modes. Although the axisymmetric mode
𝑎 has a coupling effect with the odd modes, its contribution is negligible as shown in the last row of Table
3.2.

Table 3.2: Comparison of GBT with different modes and shell results.

Type of analysis Max. tip
displacement [mm]

Mean relative
difference [%]

Shell 47.26 -
GBT, RB(1,3) ⇒ Euler-Bernoulli beam 3.82 91.99
GBT, RB(1,3) + SV modes 4.44 90.67
GBT, RB(1,3) + SU modes 9.76 79.55
GBT, RB(1,3) + SU + SV modes ⇒ Timoshenko beam 10.70 77.57
GBT, RB(1,3) + LS(5,7,9,11) modes ⇒ Classical GBT 9.83 81.14
GBT, RB(1,3) + LS(5,7,9,11) + SV modes 11.82 77.09
GBT, RB(1,3) + LS(5,7,9,11) + SU modes 44.70 5.39
GBT, RB(1,3) + LS(5,7,9,11)+ SU + SV modes 47.20 0.12
GBT, RB(1,3) + LS(5,7,9,11,15,17,19,21)+ 𝑎 + SU + SV modes 47.22 0.08

Longitudinally, the GBT model is discretized by 40 elements, which is enough to reach a displacement
convergence of above 99.50 % as shown in Figure 3.9. Considering the number of modes and elements
used, the total degrees of freedom (DoF) for the GBT model is 1, 351 which is below 1.20 % of the
equivalent shell element model which has 115, 680 DoF. Figure 3.9 shows the finite element solution
convergence with respect to the number of GBT elements. In this example, with just two GBT elements
the solution can be approximated with an accuracy of above 85 %.

The deformed configuration in Figure 3.10 shows a perfect agreement between the GBT and the shell
model. In Figure 3.10, the ovalization of the pipe bend due to the in-plane bending can be clearly observed
near the mid span. In the GBT model, the coupled warping stiffness matrix 53𝐶 is mainly responsible for
this effect. This stiffness matrix relates the forces in mode 3 to the displacement in mode 5.
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Figure 3.9: GBT solution convergence.

(a) GBT (b) Shell

Figure 3.10: In-plane deformation shape of a 90◦ cantilever pipe bend (×40).

Here, to have a fair comparison between GBT and shell computation speed the stiffness matrix of the shell
element model is extracted from ANSYS and solved using the same linear equation solver and computer
processor as the GBT model. In Table 3.3, it is shown that the GBT model needs less than 1.5 % of the
time needed by the shell element model.

Table 3.3: Computational speed comparison of GBT and shell.

GBT Shell
System stiffness matrix size 1320 × 1320 115200 × 115200
Computation speed: using the same linear equation solver and processor 0.0096 s 0.8175 s

In Figure 3.11, the sparsity pattern of the system stiffness matrices of GBT and shell shows that the GBT
model has a much denser stiffness matrix than the shell element model.
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Figure 3.11: The sparsity pattern of the system stiffness matrices.
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Figure 3.12: GBT deformation modes amplitude.
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The relatively high density of the GBT stiffness matrix is insignificant in the computational speed
presented in Table 3.3 since the shell element model has a considerably larger number of DoF. However,
it can be summarized that the increase in the density of the GBT stiffness matrix in problems involving
deformation mode coupling will reduce the computational efficiency of GBT.

In Figure 3.12, the modal decomposition of GBT is presented for the longitudinal solution 𝑉 (𝜑) consid-
ering modes with a significant contribution. In these figures, it can be observed that deformation modes
1, 3, and 5 have the highest contribution in the total displacement and stress fields. Although, the direct
contribution of SU (shear-u) modes does not appear significant in the figures, without their coupling effect
with classical GBT modes the amplitude of RB (rigid-body) and LS (local shell-type) modes would have
been very inaccurate. From the amplitude of deformation mode 5, the maximum ovalization on the pipe
bend occurs at around

𝜑

𝜓
= 0.40.
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Min. = -1.39

(c) 𝑤local (×370)

 GBT
            Shell 
 Cross-section

Figure 3.13: Comparison of displacements at the tip [mm].

In Figures 3.13 to 3.17, detailed cross-sectional comparisons of displacement and stress resultants of GBT
and shell are presented at the free end (tip) and the mid span of the cantilever curved pipe. The radial
and angular coordinates of the polar plots in these figures represent the magnitude of the displacement or
the stress resultant and the angle 𝜃, respectively. The dashed line (undeformed cross-section) represents
a magnitude of zero. In Figure 3.13a, the polar coordinates are shown on the plot as a sample. The
local displacement 𝑤 is shown as 𝑤total for all modes, 𝑤bending for bending modes, and 𝑤local for all LS
modes. Table 3.4 summarizes the quantitative deviations between the GBT and shell model analyses
at a cross-section using the mean relative difference (Equation (2.89)) and the standard deviation of the

65



3.5: Numerical examples

relative differences. Here, the maximum differences between GBT and shell for the significant stress
resultants are below 3%.

Max. = 9.34 
Min. = -16.56

(a) 𝑤total (×40)

Max. = 11.03 
Min. = -11.03

(b) 𝑤bending (×35)

Max. = 7.00 
Min. = -6.12

(c) 𝑤local (×60)

 GBT
            Shell 
 Cross-section

Figure 3.14: Comparison of displacements at the mid span [mm].

Max. = 665.22 
Min. = -407.65

(a) 𝑀𝜑

Max. = 2170.77 
Min. = -1170.42

(b) 𝑀𝜃

Max. = 40.46 
Min. = -40.46

(c) 𝑀𝜑𝜃

 GBT
            Shell 
 Cross-section

Figure 3.15: Comparison of bending moment per unit length at the mid span
[
Nmm
mm

]
.

Max. = 590.22 
Min. = -604.77

(a) 𝑁𝜑

Max. = 2.86 
Min. = -37.18

(b) 𝑁𝜃

Max. = 36.27
Min. = -36.27

(c) 𝑁𝜑𝜃

 GBT
            Shell 
 Cross-section

Figure 3.16: Comparison of normal force per unit length at the mid span
[

N
mm

]
.

Max. = 0.31 
Min. = -0.29

(a) 𝑄𝜑

Max. = 10.37 
Min. = -10.37

(b) 𝑄 𝜃

 GBT
            Shell 
 Cross-section

Figure 3.17: Comparison of shear force per unit length at the mid span
[

N
mm

]
.
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Chapter 3: Formulation of GBT for pipe bends

Table 3.4: Comparison of GBT and shell results at the mid span.

𝑀𝜑 𝑀𝜃 𝑀𝜑𝜃 𝑁𝜑 𝑁𝜃 𝑁𝜑𝜃 𝑄𝜑 𝑄 𝜃 𝑤local 𝑤bending 𝑤total

Relative mean difference [%] 0.57 0.67 2.64 0.47 0.56 1.12 5.12 0.56 0.32 0.02 0.19
Standard deviation [%] 0.59 0.79 3.19 0.53 0.39 0.82 4.72 0.64 0.35 0.00 0.26

For this example, the effect of the Poisson ratio is investigated by comparing the displacement and
stress field results calculated with 𝜇 = 0.3 to 𝜇 = 0.0. As shown in Figure 3.18, the Poisson value has a
negligible effect in the displacement field but has a significant effect in the longitudinal bending moment’s
stress resultant.

Max. = 9.72 
Min. = -16.95

(a) 𝑤total (×40)

 GBT
            Shell 
 Cross-section

Max. = 72.45 
Min. = -74.53

(b) 𝑀𝜑

Figure 3.18: Displacements and bending moment at the mid span when 𝜇 = 0.

3.5.2 Out-of-plane bending

In this example, the radius ratio of the curved pipe is increased to 𝛼 =
1
6

and the direction of the distributed
uniform line load 𝑞 is changed, such that it will cause an out-of-plane bending as shown in Figure 3.19.
The rest of the parameters are kept the same as those used in the previous example.

Y

Z

q

(a) Loading at the free end

Y

X

 ψ

R

400 mm

$

$

(b) Cantilever arch pipe

𝑅 = 3000 mm
𝑟 = 500 mm
𝑡 = 10 mm
𝜓 = 90◦

𝐸 = 205 GPa
𝜇 = 0.3

𝑞 =
50
2𝜋𝑟

kN
mm

Figure 3.19: Out-of-plane loading of a circular section cantilever arch beam.
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3.5: Numerical examples

Due to the change in the direction of the loading, the modes which have an external load contribution
are mode 2 and 4 and their respective shear-v modes. Therefore, the even modes are chosen for the GBT
analysis. The torsion mode is also included in the analysis since it has a coupling effect with even modes.

Table 3.5: Comparison of shell and GBT with different modes.

Type of analysis Max. displacement
at section A [mm]

Mean relative
difference [%]

Shell 9.18 -
GBT, RB(𝑡,2) + LS(4,6,8,10) + SU + SV modes 9.10 0.69
GBT, RB(𝑡,2) + LS(4,6,8,10,12,14,16) + SU + SV modes 9.17 0.13

Although the even modes up to 10 would have been enough to reach a displacement field convergence,
even modes up to 16 are considered in the analysis to also achieve a reasonable convergence in the stress
field (Table 3.5). In total 20 GBT elements are used.

(a) GBT (b) Shell

Figure 3.20: Out-of-plane deformation shape of a 90◦ cantilever pipe bend (×50).

Max. = 9.18  
Min. = -9.18

(a) 𝑤total (×55)

Max. = 7.62 
Min. = -7.62

(b) 𝑤bending (×65)

Max. = 2.95 
Min. = -2.95

(c) 𝑤local (×170)

 GBT
            Shell 
 Cross-section

Figure 3.21: Comparison of displacements at section A [mm].

In this example, the maximum differences between GBT and shell for the stress resultants are below 6%
(Table 3.6). Here, the relatively high difference in stress resultants is visible due to the proximity of
section A to the free end.
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Chapter 3: Formulation of GBT for pipe bends

Max. = 285.27 
Min. = -285.27

(a) 𝑀𝜑

Max. = 836.25 
Min. = -836.25

(b) 𝑀𝜃

Max. = 138.32 
Min. = -129.56

(c) 𝑀𝜑𝜃

 GBT
            Shell 
 Cross-section

Figure 3.22: Comparison of bending moment per unit length at section A
[
Nmm
mm

]
.

Max. = 135.90 
Min. = -135.90

(a) 𝑁𝜑

Max. = 17.19 
Min. = -17.19

(b) 𝑁𝜃

Max. = 57.25
Min. = -48.13

(c) 𝑁𝜑𝜃

 GBT
            Shell 
 Cross-section

Figure 3.23: Comparison of normal force per unit length at section A
[

N
mm

]
.

Max. = 1.25
Min. = -1.25

(a) 𝑄𝜑

Max. = 5.36
Min. = -3.38

(b) 𝑄 𝜃

 GBT
            Shell 
 Cross-section

Figure 3.24: Comparison of shear force per unit length at section A
[

N
mm

]
.

Table 3.6: Comparison of GBT and shell results at section A.

𝑀𝜑 𝑀𝜃 𝑀𝜑𝜃 𝑁𝜑 𝑁𝜃 𝑁𝜑𝜃 𝑄𝜑 𝑄 𝜃 𝑤local 𝑤bending 𝑤total

Mean relative difference [%] 4.01 3.49 2.11 5.54 5.00 1.80 5.65 3.27 0.17 0.12 0.13
Standard deviation [%] 3.14 2.39 1.22 2.23 4.69 3.41 3.12 2.79 0.42 0.00 0.04

3.5.3 Internal pressure loading

The longitudinal bending deformation of circular pipe bends due to an internal pressure is a common
problem in pipeline systems. To analyze this problem using the developed GBT formulation, an example
of a 45◦ pipe bend with a radius ratio of 𝛼 =

1
10

is considered. As shown in Figure 3.25, both ends of the
pipe are clamped and the pipe is loaded with an internal pressure load throughout the span. Based on the
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3.5: Numerical examples

loading condition and bend radius ratio 𝛼, the only modes which have an external load contribution are
axisymmetric mode 𝑎, bending mode 3, and ovalization mode 5. Here, considering odd modes up to 13
with their respective SU and SV modes is enough to reach convergence (Table 3.7). In this example, the
model consisted of 18 GBT elements.

Table 3.7: Comparison of shell and GBT with different modes.

Type of analysis Max. displacement at
the mid span [mm]

Mean relative
difference [%]

Shell 0.5103 -
GBT, RB(1,3) + 𝑎 + LS(5,7,9)+ SU + SV modes 0.5112 0.298
GBT, RB(1,3) + 𝑎 + LS(5,7,9,11,13)+ SU + SV modes 0.5109 0.087
GBT, RB(1,3) + 𝑎 + LS(5,7,9,11,13,15,17)+ SU + SV modes 0.5109 0.087

𝑅 = 3000 mm
𝑟 = 300 mm
𝑡 = 15 mm
𝜓 = 45◦

𝐸 = 205 GPa
𝜇 = 0.3

𝑞 = 10
N

mm2

r

Y

X

 ψ
T 

R

t

Figure 3.25: Internal pressure loading of an end restrained 45◦ pipe bend.

(a) GBT (b) Shell

Figure 3.26: Internal pressure loading deformation shape of an end restrained 45◦ pipe bend (×600).

70



Chapter 3: Formulation of GBT for pipe bends

In Figures 3.27 to 3.30, detailed cross-sectional comparisons of displacement and stress resultants of
GBT and shell are presented at the mid span of the pipe bend.

Max. = 0.51 
Min. = -0.28

(a) 𝑤total (×580)

Max. = 0.28
Min. = -0.28

(b) 𝑤bending (×715)

Max. = 0.51
Min. = -0.01

(c) 𝑤local (×580)

 GBT
            Shell 
 Cross-section

Figure 3.27: Comparison of displacements at the mid span [mm].

Max. = 227.27 
Min. = -320.52

(a) 𝑀𝜑

Max. = 630.73 
Min. = -716.88

(b) 𝑀𝜃

 GBT
            Shell 
 Cross-section

Figure 3.28: Comparison of bending moment per unit length at the mid span
[
Nmm
mm

]
.

Stress resultants such as the twist bending moment 𝑀𝜑𝜃 , shear membrane force 𝑁𝜑𝜃 and the longitudinal
plate’s shear 𝑄𝜑 are zero at the mid span. In Table 3.8, the quantitative differences between GBT and
shell displacement and stress resultants are presented which in this case are below 3%.

Max. = 1285.91
Min. = 573.32

(a) 𝑁𝜑

Max. = 3077.52 
Min. = 2887.22

(b) 𝑁𝜃

 GBT
            Shell 
 Cross-section

Figure 3.29: Comparison of normal force per unit length at the mid span
[

N
mm

]
.
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3.6: Membrane locking

Max. = 5.66 
Min. = -5.66

 GBT
            Shell 
 Cross-section

Figure 3.30: Comparison of 𝑄 𝜃 at the mid span
[

N
mm

]
.

Table 3.8: Comparison of GBT and shell results at the mid span.

𝑀𝜑 𝑀𝜃 𝑁𝜑 𝑁𝜃 𝑄 𝜃 𝑤local 𝑤bending 𝑤total

Mean relative difference [%] 0.56 0.14 0.01 0.02 2.90 0.51 0.03 0.08
Standard deviation [%] 1.62 0.03 0.00 0.01 15.88 1.77 0.00 0.05

Max. = 0.72 
Min. = -0.75

(a) 𝑤total (×415)

Max. = 831.66 
Min. = -521.45

(b) 𝑁𝜑

Max. = 914.47 
Min. = -1034.58

(c) 𝑀𝜃

 GBT
            Shell 
 Cross-section

Figure 3.31: Displacement and stress resultants at the mid span when 𝜇 = 0.

In this example, due to the boundary condition, the effect of the Poisson ratio is large in both displacement
and stress fields. As shown in Figure 3.31, neglecting the Poisson value (𝜇 = 0.0) will result in a significant
change of displacement and stress resultants.

3.6 Membrane locking

The membrane locking problem was first identified and analyzed by Stolarski and Belytschko [158, 159]
for curved 𝐶1 beam elements with linear axial and cubic transverse displacement fields. This problem
results from the inability of an element to represent inextensional bending deformations without additional
parasitic membrane contributions [33, 34]. This type of locking only occurs in curved elements since the
bending and membrane actions are coupled together.

Here, the critical parameter is the wall thickness of the member since the ratio of bending stiffness in
equation (3.27) to membrane stiffness in equation (3.28) is proportional to the square of the thickness 𝑡.
Hence, the decrease in the wall thickness or increase in the slenderness

𝑅

𝑡
will cause the large parts of
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Chapter 3: Formulation of GBT for pipe bends

the internal energy to be from the parasitic membrane action [51, 124].

For the curved GBT formulation presented in this chapter, the membrane locking effect is tested using
the in-plane bending numerical example in Section 3.5.1. In this example, all parameters are kept the
same except for the wall thickness which is decreased gradually, and Poisson’s ratio which is considered
to be zero to avoid any possible material-based locking effects.

Table 3.9: In-plane deformation results for a 90◦ cantilever pipe bend under tip load for different wall
thicknesses 𝑡.

Change in thickness 𝑡 [mm]

10 8 6 4 2 1 0.5

Slenderness
𝑅

𝑡
600 750 1000 1500 3000 6000 12000

Shell model [mm] 48.81 72.94 122.25 253.60 887.45 3137.56 11322.70

GBT model [mm] 48.75 72.81 121.56 246.34 728.56 1749.87 3693.98

Difference [%] −0.11 −0.18 −0.57 −2.87 −17.90 −44.23 −67.38

In Table 3.9, the maximum tip displacement of the shell (locking-free) and GBT models are compared
through the gradual change in thickness of the wall. Unfortunately, the GBT element fails the membrane
locking test since the displacement response of the GBT model becomes too stiff and the difference
compared to the shell model becomes larger for a higher slenderness ratio. Therefore, the formulated
GBT element should not be used for a slenderness ratio higher than 1500 without additional treatment such
as reformulation of the GBT element based on a mixed-finite element formulation [73, 118]. Furthermore,
in curved pipe members, since their slenderness can also be affected by the radius 𝑟 , it is important to pay
attention to the relationship between 𝑅, 𝑟 , and 𝑡.

3.7 Summary

This chapter presents the linear GBT formulation for the analysis of curved thin-walled circular pipes.
In this formulation, the virtual work of internal and external forces are derived using Sander’s linear
kinematic description of doubly curved shells with the displacement functions of GBT. These functions
are separated into cross-sectional displacements which are approximated by predefined GBT deformation
modes and longitudinal displacement which is approximated by a standard beam finite element method.
Here, the coupling between GBT modes due to the radius ratio of the pipe bend is precisely and explicitly
determined by including membrane energy contributions of transverse and shear membrane stains.

Several numerical examples are presented to demonstrate the potential of GBT. The GBT solutions are
shown to converge in terms of the displacement field components with an increasing number of modes
taken into account. In all examples, the mean relative difference between GBT and shell models in
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3.7: Summary

displacement fields is below 0.2%. In some cases, it is observed that the number of GBT modes needed
for the convergences of the stress field can be higher than that of the displacement field. In the examples
studied, the stress field components of the GBT solutions in regions distant from the boundaries converge
faster than those close to the boundaries. Here, depending on the location of the cross-section the mean
relative difference between GBT and shell models in the stress fields can be up to 6%.

Furthermore, the numerical examples show that GBT uses a much fewer number of DoF than the shell
finite element analysis to achieve an accurate solution in both stress and displacement fields. Particularly
in the first example, the GBT model has only 1.20 % of the DoF needed in the shell model.

However, the formulated displacement-based GBT element show limitations due to the membrane locking
problem, therefore it should not be applied for the analysis of members with a higher slenderness ratio.
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Chapter 4

Vibration analysis of
toroidal shells using GBT

The dynamic analysis of pipe bends or toroidal shells is an important part of the design process in
applications such as particle accelerators, fusion reactors, spacecrafts, and in many other practical
engineering structures. This chapter presents the dynamic analysis extension of the Generalized Beam
Theory (GBT) formulation developed in the previous chapter for curved thin-walled pipes.

The dynamic behavior of truncated or closed toroidal shells has been studied extensively based on the
linear thin shell theories since the earlier studies of Liepins [92, 93] on free vibrations of prestressed
toroidal shells using the finite difference method. Later, studies were conducted to improve the accuracy
and computational efficiency of determining the vibration behavior of toroidal shells under different
initial conditions by approximating the displacement field using power series expansion [84], Fourier
series expansions [90, 139] or series of trigonometric functions [101] and solving the resulting system
of partial differential equations using various types of solution approaches, such as Galerkin’s method
[90, 101], differential quadrature method [173, 174], and Rayleigh-Ritz method [79, 139].

In the context of GBT, the first dynamic formulation of GBT was developed by Schardt [134] to perform a
free vibration analysis of thin-walled prismatic sections. Since then, several studies have been conducted
on thin-walled prismatic sections, such as a study on the free vibration behavior of loaded cold-formed
steel members under axial compression [149] and non-uniform bending [26], the application of GBT for
the dynamic analysis of high-speed railway bridge decks [19], the dynamic response analysis of a cold-
formed steel lipped channel beam considering damping and various loading conditions [21], the vibration
analysis of single-cell regular polygons [59] and multi-cell rectangular tubes [62], and the formulation of
exact element shape functions using power series to improve the computational efficiency of the vibration
eigenvalue problem [23]. However, for the vibration analysis of thin-walled cylindrical hollow sections
(CHS), the only study was conducted by Basaglia [15], who formulated a GBT-based stiffness and mass
matrices incorporating the effect of the frame joints.
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4.1: Hamilton’s principle

So far, the GBT studies conducted on curved thin-walled members are limited to static analysis. Hence,
the main objective of this chapter is to develop a dynamic GBT formulation for truncated or closed
toroidal shells to determine their vibration behavior. The application of the developed GBT formulation
is demonstrated by using two numerical examples with different boundary conditions involving a com-
bination and coupling of bending, warping, torsional, axisymmetric, and local GBT deformation modes.
For validation purposes, these examples are compared to refined shell finite element models based on
the natural vibration frequencies and the associated vibration mode shapes. Here, the similarity of the
mode shapes between the GBT and the shell finite element models are quantitatively determined using
the Modal Assurance Criterion (MAC) [6] analysis value.

This chapter is organized as follows. First, the variation of the kinetic energy is presented based on
Hamilton’s principle. Then the possible deformation mode couplings are identified for the out-of-plane
and in-plane inertia of the cross-section. This leads to the formulation of the element mass matrix
based on the finite element method. Finally, a selection of numerical examples is presented, where the
undamped free vibration behavior of the pipes is determined by solving an eigenvalue problem. The
validation of the proposed approach is carried out by comparing the results obtained with refined shell
finite element models.

4.1 Hamilton’s principle

The formulation of the equations of motion describing the dynamic behavior of thin-walled pipes involves
the application of Hamilton’s Principle, which is given by:∫ 𝑡2

𝑡1

𝛿
(
𝑈int +𝑈ext − 𝑇

)
𝑑𝑡 = 0 (4.1)

where 𝛿 is the variational operator,𝑈int is the strain energy,𝑈ext is the potential of the applied loads, 𝑇 is
the kinetic energy and 𝑡 denotes the time.

j

q

q

j

Figure 4.1: Curved thin-walled circular cross-section with global (𝑋 , 𝑌 , 𝑍) and local (𝜑 ∈ [−𝜓/2, 𝜓/2],
𝜃 ∈ [0, 2𝜋], 𝑧 ∈ [−𝑡/2, 𝑡/2]) coordinate systems.
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Chapter 4: Vibration analysis of toroidal shells using GBT

The variation of the kinetic energy is defined as the volume integral of the products of the material mass
density 𝜌, the velocity components (𝑢𝑝,𝑡 , 𝑣

𝑝
,𝑡 , 𝑤

𝑝
,𝑡 ) of an arbitrary wall point 𝑝, and its respective virtual

velocity:

𝛿𝑇 =

∫
𝑉

𝜌(𝑢𝑝,𝑡𝛿𝑢
𝑝
,𝑡 + 𝑣

𝑝
,𝑡𝛿𝑣

𝑝
,𝑡 + 𝑤

𝑝
,𝑡𝛿𝑤

𝑝
,𝑡 ) d𝑉 (4.2)

The orthogonal displacements of the pipe bend at a point 𝑝 with coordinates (𝜑, 𝜃, 𝑟 + 𝑧) are denoted by
𝑢p, 𝑣𝑝, 𝑤𝑝, in the longitudinal, tangential and radial directions, respectively. These displacements can be
expressed by 𝑢, 𝑣 and 𝑤, which are displacements of points located on the middle surface of the pipe.

𝑢𝑝 =

(
1 + 𝑧 cos(𝜃)

𝑅𝜉

)
𝑢 − 𝑧

𝑤,𝜑

𝑅𝜉
(4.3)

𝑣𝑝 =

(
1 + 𝑧1

𝑟

)
𝑣 − 𝑧

𝑤, 𝜃

𝑟
(4.4)

𝑤𝑝 = 𝑤 (4.5)

where:

𝜉 = 1 + 𝛼 cos(𝜃)

𝛼 =
𝑟

𝑅
(4.6)

Substituting equations (4.3) to (4.5) into equation (4.2), the 𝛿𝑇 can be expressed as:

𝛿𝑇 = 𝜌

∫ +𝜓
2

−𝜓
2

∮ ∫ +𝑡
2

−𝑡
2

(
𝑢,𝑡𝛿𝑢,𝑡 − 𝑧

(
𝑢,𝑡𝛿

(𝑤,𝜑𝑡 − 𝑢,𝑡 cos(𝜃)
𝑅𝜉

)
+ 𝛿𝑢,𝑡

𝑤,𝜑𝑡 − 𝑢,𝑡 cos(𝜃)
𝑅𝜉

)
+ 𝑧2

𝑤,𝜑𝑡 − 𝑢,𝑡 cos(𝜃)
𝑅𝜉

𝛿

(𝑤,𝜑𝑡 − 𝑢,𝑡 cos(𝜃)
𝑅𝜉

)
+ 𝑣,𝑡𝛿𝑣,𝑡 − 𝑧

(
𝑣,𝑡𝛿

(𝑤, 𝜃𝑡 − 𝑣,𝑡
𝑟

)
− 𝛿𝑣,𝑡

𝑤, 𝜃𝑡 − 𝑣,𝑡
𝑟

)
+ 𝑧2

𝑤, 𝜃𝑡 − 𝑣,𝑡
𝑟

𝛿

(𝑤, 𝜃𝑡 − 𝑣,𝑡
𝑟

)
+ 𝑤,𝑡𝛿𝑤,𝑡

)
𝜉𝑅 𝑟 𝑑𝑧 𝑑𝜃 𝑑𝜑 (4.7)

Then, inserting equations (3.1) to (3.3) into equation (4.7), the variation of the kinetic energy can be
rewritten as:

𝛿𝑇 =

∞∑︁
𝑘=1

∞∑︁
𝑖=1

∫ +𝜓
2

−𝜓
2

(
𝑖𝑘𝑄 𝑖𝑉,𝜑𝑡 (𝜑)𝑘𝛿𝑉,𝜑𝑡 (𝜑) + 𝑖𝑘𝑊 𝑖𝑉,𝑡 (𝜑)𝑘𝛿𝑉,𝑡 (𝜑)

)
𝑅 𝑑𝜑 (4.8)

with the section properties

𝑖𝑘𝑄 = 𝜌𝑡

∮
𝑖𝑢(𝜃)𝑘𝑢(𝜃) 𝜉 𝑟 𝑑𝜃 + 𝜌𝑡3

12𝑅2

∮ (
𝑖𝑤(𝜃) − 𝑖𝑢(𝜃) cos(𝜃)

) (
𝑘𝑤(𝜃) − 𝑘𝑢(𝜃) cos(𝜃)

) 𝑟
𝜉
𝑑𝜃 (4.9)

𝑖𝑘𝑊 = 𝜌𝑡

∮ (
𝑖𝑣(𝜃)𝑘𝑣(𝜃) + 𝑖𝑤(𝜃)𝑘𝑤(𝜃)

)
𝜉 𝑟 𝑑𝜃

+ 𝜌𝑡3

12𝑟2

∮ (
𝑖𝑤, 𝜃 (𝜃) − 𝑖𝑣(𝜃)

) (
𝑘𝑤, 𝜃 (𝜃) − 𝑘𝑣(𝜃)

)
𝜉 𝑟 𝑑𝜃 (4.10)
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where the first and the second integral terms of the coefficients 𝑖𝑘𝑄 represent the out-of-plane translational
and rotational inertia of cross-section, respectively, whereas for the coefficients 𝑖𝑘𝑊 these terms represent
an in-plane translational and rotational inertia of the cross-section.

4.2 Deformation mode coupling

The GBT deformation modes used in this section are the same as the ones derived for circular pipe bends
in the previous chapter. The inertia coefficient matrices of the GBT element has off-diagonal terms due
to the deformation mode coupling, which is dependent on the radius ratio 𝛼 of the pipe. Using equations
(4.9) and (4.10), the possible mode couplings are identified for out-of-plane 𝑖𝑘𝑄 and in-plane 𝑖𝑘𝑊 inertia
coefficients. Figures 4.2 and 4.3 show the mode coupling between 𝑡, 𝑎 and the first five conventional and
non-conventional modes as a sample in a table (matrix).
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Figure 4.2: List of possible mode couplings for inertia coefficient 𝑖𝑘𝑄.
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Figure 4.3: List of possible mode couplings for inertia coefficient 𝑖𝑘𝑊 .

The empty cells in these tables make evident that the coupling between modes 𝑖 and 𝑘 is zero. Here,
the contribution of the out-of-plane 𝑖𝑘𝑄 coefficient is insignificant for all modes besides mode 1. On the
other hand, the in-plane 𝑖𝑘𝑊 coefficient has no contribution in mode 1 but is significant for all the other
modes.
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4.3 Finite element formulation

Following the same procedure used to formulate the element stiffness matrix of curved pipes in the
previous chapter, the GBT curved consistent element mass matrix is derived by substituting equations
(3.48) and (3.49) into the variation of the kinetic energy equation (4.8). This gives:

𝛿𝑇 =

∞∑︁
𝑘=1

∞∑︁
𝑖=1

(
𝑖𝑘𝑄 𝑖𝑘 [V8] + 𝑖𝑘𝑊 𝑖𝑘 [V7]

)
𝑖 {𝜗},𝑡 (4.11)

where:

𝑖𝑘 [V7] = 𝑘 [𝑆ℎ]𝑇
∫ +𝜓

2

−𝜓
2

𝑘 {𝑇𝜑}𝑇 𝑖 {𝑇𝜑} 𝑅 𝑑𝜑 𝑖 [𝑆ℎ] (4.12)

𝑖𝑘 [V8] = 𝑘 [𝑆ℎ]𝑇
∫ +𝜓

2

−𝜓
2

𝑘 {𝑇𝜑}𝑇,𝜑 𝑖 {𝑇𝜑},𝜑 𝑅 𝑑𝜑 𝑖 [𝑆ℎ] (4.13)

Equations (4.12) and (4.13) are the same as equations (3.56) and (3.57), respectively.

The sub-matrix component 𝑖𝑘 [𝑚] of the element mass matrix is extracted from equation (4.11) as:

𝑖𝑘 [𝑚] = 𝑖𝑘𝑄 𝑖𝑘 [V8] + 𝑖𝑘𝑊 𝑖𝑘 [V7] (4.14)

The element mass matrix [𝑀]𝑒 in equation (4.16) is built based on the sub-matrix in equation (4.14).
The existence of the matrix 𝑖𝑘 [𝑚] depends on the possible mode coupling between modes 𝑖 and 𝑘 as
explained in Section 4.2.

The order of deformation modes used in the element mass matrix is given on the corresponding generalized
modal amplitude vector {𝑑} in equation (4.15).

{𝑑}𝑇 =

{
𝑎 {𝜗} , 1 {𝜗}, 3 {𝜗},

V
3 {𝜗},

U
3 {𝜗}, . . . , 𝑡 {𝜗} , 2 {𝜗},

V
2 {𝜗},

U
2 {𝜗}, 4 {𝜗}, . . .

}
(4.15)

- Mass lumping or diagonalization: the densely populated consistent element mass matrix in equation
(4.16) has a drawback for the future implementation of an explicit finite element method [175], which is a
useful tool in solving the large deformation transient dynamics problem. The diagonalization of the mass
matrix will avoid the need for inverting the mass matrix and decouple the system of equations, which
makes the explicit method efficient and practical. Simpler mass lumping schemes such as the row sum
method and diagonal scaling [50, 180] cannot be applied in this case since they would lead to wrong
results. Here, the application of a more advanced mass lumping technique for GBT’s consistent element
mass matrix needs to be studied, which is beyond the scope of this dissertation.
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4.4 Numerical examples

In this section, two examples of truncated and closed toroidal shells with fixed and free boundary
conditions are presented. Here, the undamped free vibration behavior of the pipes is determined by
solving an eigenvalue problem(
[𝐾] − 𝜔2 [𝑀]

)
{𝑑} = {0} (4.17)

where [𝐾] is the member stiffness matrix, [𝑀] is the member mass matrix, {𝑑} is the generalized modal
amplitude vector and 𝜔 is the circular natural frequency. Both examples are compared to equivalent shell
finite element models using ANSYS [10] software. These models have been developed using quadrilateral
elements with 6 DoF per node which are based on Reissner-Mindlin’s kinematic assumption with linear
interpolation functions as implemented in the ANSYS software under the name SHELL 181. The element
sizes used for the shell element models are approximately 30 × 30 mm.

4.4.1 Cantilever arch pipe

In this example, a cantilever pipe bend with a radius ratio of 𝛼 =
1
6

and a bend angle of 𝜓 =
𝜋

2
is

considered. The cross-section dimensions and material parameters are provided in Figure 4.4. The GBT
analysis is performed considering several combinations of the deformation mode classes RB, 𝑎, LS, SU,
and SV which have previously been described in Sections 2.2.5 and 3.2. In the case of LS deformation
modes and their respective SU and SV modes, the analyses are carried out considering modes up to 10,
15, and 20 in order to check the convergence of the solution.

rt

(a) Cross-section

Y

X

ψ

R

(b) Cantilever arch pipe

𝑅 = 3000 mm
𝑟 = 500 mm
𝑡 = 10 mm
𝜓 = 90◦

𝐸 = 205 GPa

𝜌 = 7850
kg
m3

𝜇 = 0.3

Figure 4.4: Free vibration analysis of a 90◦ cantilever arch pipe.

Here, for the selected number and types of GBT deformation modes the element mass and stiffness
matrices are built using equations (4.16) and (3.67), respectively.
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(a) Mode 1, 𝑛 = 1, 𝑚 = 1 (b) Mode 2, 𝑛 = 1, 𝑚 = 1 (c) Mode 3, 𝑛 = 2, 𝑚 = 1 (d) Mode 4, 𝑛 = 2, 𝑚 = 1

(e) Mode 5, 𝑛 = 3, 𝑚 = 1 (f) Mode 6, 𝑛 = 3, 𝑚 = 1 (g) Mode 7, 𝑛 = 3, 𝑚 = 2 (h) Mode 8, 𝑛 = 3, 𝑚 = 2

Figure 4.5: The first eight natural modes of a 90◦ cantilever pipe bend.

0 0.1 0.2 0.3 0.4 0.50.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

G
BT

 m
od

e 
am

pl
itu

de

RB(3)
SU(3)
LS(5)
SU(5)
LS(7)

(a) Vibration mode 1
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(c) Vibration mode 3
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(d) Vibration mode 4

Figure 4.6: Participation of GBT modes (RB(rigid-body), LS(local shell-type), SU(Shear-u)) to the
vibration modes of a 90◦ cantilever pipe bend.
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Longitudinally, the GBT model is discretized into 20 elements. Considering the number of GBT
deformation modes and elements used, the total Dof for the GBT model is 1, 909 which is below 3.40 %
of the equivalent shell element model which has 56, 880 DoF.

In Figure 4.5, the mode shapes of the GBT model are illustrated as an overlay for the two extreme ranges
of vibration. The parameters 𝑚 and 𝑛 represent the longitudinal and circumferential (cross-sectional)
wave number, respectively.
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(b) Vibration mode 6
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(c) Vibration mode 7
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(d) Vibration mode 8

Figure 4.7: Participation of GBT modes to the vibration modes of a 90◦ cantilever pipe bend.

In Figures 4.6 and 4.7, the modal decomposition of GBT is presented for each of the first eight vibration
modes of the cantilever arch pipe. In these figures, only the participation of the GBT modes with a
significant contribution is shown after normalizing the generalized modal amplitude vectors. The first
and second vibration modes, which are in-plane and out-of-plane bending modes, are mainly from the
GBT RB modes 3 and 2, respectively.

In general, vibration modes involving in-plane vibrations (odd vibration modes) are only dependent on
the odd GBT modes. Similarly, vibration modes involving out-of-plane vibrations (even vibration modes)
are only dependent on the even GBT modes. This characteristic is associated with the GBT element
stiffness and mass matrices, in which the coupling of GBT modes only exists within even or odd modes,
while no coupling exists between even and odd modes. The contribution of LS modes becomes more
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significant for higher vibration modes. The SU modes in general have a higher contribution than the SV
modes. The effect of the SU modes can be observed more significantly in odd vibration modes.

In Table 4.1, the associated natural frequencies of the GBT model mode shapes are compared to the shell
model. Here, it is evident that the GBT model converges rapidly to the shell model solution when more
GBT deformation modes are considered in the analysis. However, Table 4.1 also shows that the change
in the natural frequencies is insignificant for the increment of modes above 15. The maximum relative
difference (equation (4.18)) of the natural frequencies between the GBT model (15 modes) and the shell
model is below 0.80 %.

Relative difference =
𝑓GBT − 𝑓Shell

𝑓Shell
× 100% (4.18)

where 𝑓GBT and 𝑓Shell are the natural frequencies of the GBT and shell model, respectively.

Table 4.1: Comparison of GBT with different modes and shell results.

Mode
No. 𝑛 𝑚

Natural frequency (Hz) Relative
difference [%]GBT (10 modes) GBT (15 modes) GBT (20 modes) Shell

1 1 1 21.48 21.13 21.13 21.13 0.02

2 1 1 21.66 21.60 21.60 21.60 0.03

3 2 1 40.39 39.80 39.80 39.85 −0.12

4 2 1 40.48 40.37 40.37 40.42 −0.12

5 3 1 82.02 79.53 79.53 79.67 −0.18

6 3 1 82.55 81.75 81.75 81.94 −0.22

7 3 2 94.29 92.84 92.84 93.16 −0.34

8 3 2 95.15 94.00 94.00 94.30 −0.32

9 3 3 131.84 128.92 128.92 129.30 −0.29

10 3 3 133.85 132.91 132.91 133.34 −0.32

11 4 3 144.26 144.18 144.18 144.09 0.06

12 4 3 157.84 155.29 155.29 156.41 −0.72

In addition to the comparison of the natural frequencies, the similarity of the GBT and shell model
vibration mode shapes are quantitatively compared to each other using the Modal Assurance Criterion
(MAC) [6]. The MAC value is calculated as the normalized scalar product of the two sets of vectors
{𝜙𝐴} and {𝜙𝑋 }. The resulting scalars are arranged into the MAC matrix.

MAC(𝐴, 𝑋) =
|{𝜙𝐴}𝑇 {𝜙𝑋 }|2

({𝜙𝐴}𝑇 {𝜙𝐴})({𝜙𝑋 }𝑇 {𝜙𝑋 })
(4.19)
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Figure 4.8: MAC value comparison of GBT and shell vibration mode shapes considering the warping
displacement (𝑢) of the cantilever arch pipe.
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Figure 4.9: MAC value comparison of GBT and shell vibration mode shapes considering the tangential
and radial displacements (𝑣 + 𝑤) of the cantilever arch pipe.

86



Chapter 4: Vibration analysis of toroidal shells using GBT

In equation (4.19), the vectors {𝜙𝐴} and {𝜙𝑋 } are built for the GBT and shell mode shapes, respectively,
by using the local 𝑢, 𝑣, and 𝑤 displacements. If the result of the MAC value is closer to one, the two
mode shapes are identical or fully correlated, whereas if the MAC value is closer to zero, the mode shapes
are different or have no correlation. In this example, since the longitudinal displacements 𝑢 are much
smaller than the transverse displacements 𝑣 + 𝑤, the MAC values are quantified treating both directions
separately. In Figure 4.8, the MAC values are presented for the longitudinal displacement 𝑢, while in
Figure 4.9 the MAC values are computed by stacking the transverse displacements 𝑣 and 𝑤 together.
Here, both MAC matrices show a strong correlation for all modes, which is in complete agreement with
the previous assessment regarding the natural frequencies.

4.4.2 Toroidal shell

In this example, a closed toroidal shell with a radius ratio of 𝛼 =
2
5

and a free support condition is
considered. The geometric and physical properties shown in Figure 4.10 are taken from the example in
[139], where the authors used a semi-analytical method to determine the vibration behavior. Following
the same procedure as in the previous example, the number of GBT deformation modes needed to reach
convergence is determined. Here, the total DoF of the GBT model considering 15 deformation modes
and 80 elements longitudinally is 7, 280 which is below 7.0 % of the equivalent shell element model with
104, 280 DoF.

rt

(a) Cross-section

R
<

;

(b) Toroidal shell

𝑅 = 1000 mm
𝑟 = 400 mm
𝑡 = 10 mm
𝐸 = 210 GPa

𝜌 = 7850
kg
m3

𝜇 = 0.3

Figure 4.10: Closed toroidal shell.

In Figure 4.11, the first eight mode shapes of the GBT model are shown. Except for the first mode,
all the other modes shown in the figure appear twice due to the spatial symmetry of the model. The
detailed cross-sectional profiles showing the classification of mode types (symmetric or asymmetric) can
be referred in [139]. In Figures 4.12 and 4.13, the modal decomposition of GBT is presented for each of
the first eight vibration modes of the toroidal shell. For the first vibration mode, the longitudinal wave
number 𝑚 = 0 since the contributing even GBT mode amplitudes are constant (Figure 4.12a). In general,
the longitudinal wave number of the vibration modes corresponds with the periodic wave number of the
GBT mode’s amplitude.
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4.4: Numerical examples

(a) Mode 1, 𝑚 = 0 (b) Mode 2, 𝑚 = 2 (c) Mode 3, 𝑚 = 2 (d) Mode 4, 𝑚 = 3

(e) Mode 5, 𝑚 = 3 (f) Mode 6, 𝑚 = 4 (g) Mode 7, 𝑚 = 4 (h) Mode 8, 𝑚 = 1

Figure 4.11: The first eight natural modes of the toroidal shell.
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(a) Vibration mode 1
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(b) Vibration mode 2
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(c) Vibration mode 3
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(d) Vibration mode 4

Figure 4.12: Participation of GBT modes (RB (rigid-body), LS (local shell-type), SU (Shear-u)) to the
vibration modes of toroidal shell.
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Chapter 4: Vibration analysis of toroidal shells using GBT

From vibration modes 2 till 7, the contribution of LS modes increases gradually since the cross-sectional
wave number of the vibration modes are directly related to that of the LS modes. The vibration mode 8
is dependent on even GBT modes with a significant participation of SV and SU modes.
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(a) Vibration mode 5
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(b) Vibration mode 6
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(c) Vibration mode 7
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(d) Vibration mode 8

Figure 4.13: Participation of GBT modes (RB (rigid-body), LS (local shell-type), SV (Shear-v), SU
(Shear-u)) to the vibration modes of toroidal shell.

In Table 4.2, the first 11 natural frequencies are presented for the GBT model using 15 and 20 deformation
modes, the results of reference [139] using 15 Fourier terms, and the shell model. The last column in
Table 4.2 shows the relative difference between the GBT model with 15 deformation modes and the shell
model. Here, the maximum relative difference is below 0.30%.

In Figure 4.14, the comparison of mode shapes between the GBT model and the shell model is performed
by computing the MAC values for the longitudinal displacements 𝑢, while in Figure 4.15, the MAC values
are computed by stacking the transverse displacements 𝑣 and 𝑤 together. Here, the corresponding GBT
and shell mode shapes were chosen from their subspaces such that a proper alignment (spatial rotation)
could be achieved before the computation of the MAC values. The results show the total correlation
between the vibration modes of the GBT and shell analyses. In Figure 4.14, the MAC value for the
vibration mode 1 is zero since the mode does not have any warping displacements 𝑢.
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4.4: Numerical examples

Table 4.2: Comparison of GBT with different modes and shell results.

Mode
No.

Mode
type 𝑚

Natural frequency (Hz) Relative
difference [%]GBT (15 modes) GBT (20 modes) Ref. [139] Shell

1 Asym. 0 80.85 80.78 80.73 80.74 0.138

2 Asym. 2 110.53 110.30 111.11 110.32 0.191

3 Sym. 2 122.44 122.17 123.05 122.20 0.193

4 Asym. 3 205.77 205.68 207.40 205.76 0.003

5 Sym. 3 206.22 206.33 207.85 206.22 0.001

6 Sym. 4 307.08 307.22 309.74 307.90 −0.265

7 Asym. 4 307.23 307.74 309.89 308.05 −0.265

8 Asym. 1 351.23 351.24 351.06 351.27 −0.012

9 Asym. 2 398.76 398.46 398.61 398.87 −0.027

10 Sym. 2 401.49 401.50 401.28 401.56 −0.018

11 Sym. 1 415.69 415.68 415.22 415.74 −0.013
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Figure 4.14: MAC value comparison of GBT and shell mode shapes considering the warping displace-
ments (𝑢) of the toroidal shell.
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Figure 4.15: MAC value comparison of GBT and shell mode shapes considering the tangential and radial
displacements (𝑣 + 𝑤) of the toroidal shell.

4.5 Summary

A dynamic GBT formulation for the analysis of curved thin-walled pipes has been presented in this
chapter. Here, the inertia of the GBT element is formulated from the variation of the kinetic energy. Due
to the radius ratio 𝛼, the consistent mass matrix derived from this formulation has off-diagonal terms
as a result of the deformation mode coupling within even modes and odd modes in both in-plane and
out-of-plane inertia components. Longitudinally, the GBT solution is approximated using a standard
beam finite element method.

Two numerical examples have been presented to exhibit the potential of the dynamic GBT formulation,
specifically by conducting the analysis of the undamped free vibration of arch pipes and toroidal shells
involving a combination and coupling of several GBT deformation modes. The eigenvalues of the GBT
modal solution converge with an increasing number of deformation modes taken into account. Based
on the modal decomposition of GBT, the shear modes have a significant contribution to the vibration
modes. In both examples, the relative difference between the GBT and shell models regarding the natural
frequencies did not exceed 0.80 %. In addition, the MAC values have demonstrated the full correlation
of the mode shapes between the GBT and the shell models. Hence, the few number of GBT deformation
modes and elements used in the GBT modal analysis provide a comprehensive insight into the structural
behavior of curved members with significantly fewer DoF than the shell element models.
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4.5: Summary

Based on recent studies which have developed a coupling scheme between the GBT and the shell finite
element analysis [30, 95], it is possible to incorporate GBT into standard commercial FEM software
packages and utilize the exceptional computational efficiency of GBT in prismatic and circular thin-
walled cross-sections. However, further studies are required to develop a lumped GBT mass matrix
which is vital for the application of an explicit dynamic analysis.
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Chapter 5

Geometrically nonlinear
formulation of GBT for straight pipes

One of the main aspects in the design of pipe members is to minimize the thickness as much as possible to
save material and reduce weight. Since the load carrying capacity of pipe members is mainly influenced
by their curvature, the buckling of these members is usually caused by the change in geometry rather
than failure of the material strength. For example, an increase in the cross-sectional ovalization of a
thin-walled circular pipe member during bending will lead to a gradual loss of the bending stiffness.
In this chapter, the analysis of this complex structural behavior of thin-walled circular pipe members is
carried out through the formulation of a geometrically nonlinear GBT analysis.

The nonlinear circular cylindrical shell theories were established early on based on the shallow-shell
assumption [44, 104, 170]. They were mainly applicable for deformations dominated by the radial dis-
placement 𝑤. In the study conducted by von Kármán and Tsien [172], the stability of axially loaded
circular cylindrical shells was correctly analyzed based on this assumption. However, in theories devel-
oped by Flügge [53] for moderately thick shells, and by Novozhilov [108] concerning large deflections
of thin shells the shallow-shell assumption was eliminated.

The nonlinear thin shell theory developed by Sanders [126] and Koiter [82] was emphasized on the
simplification of the kinematic equations and was suitable for finite deformations with small strains and
moderately small rotations. There are several more nonlinear shell theories developed in the past based
on the available solution method and the requirement of the structural problem. In general, classical
shell theories emphasized on simplicity and omitted relatively small terms, since most of these theories
were developed in the pre-computer era for analytical studies [161]. However, with the development
of the finite element method, more advanced nonlinear shell theories were formulated considering large
displacements, rotations, and strains [5, 34, 76, 155]. These formulations have pushed forward the shell
based finite element method to be one of the most reliable and robust tool in the analysis of thin-walled
structures.
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In the context of GBT, the development of geometrically nonlinear formulations of thin-walled mem-
bers was mainly focused on prismatic sections. The first geometrically nonlinear GBT formulation was
proposed by Silvestre [147] for the elastic post-buckling analysis of uniformly compressed thin-walled
members with open cross-sections based on simplified nonlinear kinematic equations. Later, the studies
conducted by Gonçalves [63, 65] extended this initial formulation considering large displacements and
rotations based on Reissner-Simo’s beam theory [119, 154]. This theory is geometrically exact regard-
less of the magnitude of the displacements and rotations involved. Furthermore, in [58] he included
the physical nonlinearity to analyze elastoplastic thin-walled members while keeping the geometrical
nonlinearity restricted to the total Lagrangian description. Other studies in this area developed nonlinear
formulations based on the implicit corotational method [121], the nonlinear Galerkin method [114], and
the nonlinear bending strain terms [97]. However, the most complete nonlinear GBT formulation, which
is geometrically exact and considers physical nonlinearity, is presented by Duan [47]. Additionally, he
developed a nonlinear explicit dynamic finite element formulation in GBT [45] to simulate the dynamic
response of prismatic thin-walled members under transverse impulsive loading.

Unfortunately, in the case of thin-walled circular pipe sections, the nonlinear analysis in GBT is currently
limited to the buckling analysis for members subjected to combinations of axial compression and external
pressure [15, 16, 143]. So far, no fully geometrical nonlinear GBT formulations are available for the
analysis of thin-walled circular pipe sections under arbitrary loading.

Hence, the main objective of this chapter is the development of fully geometrical nonlinear GBT formu-
lations for the analysis of thin-walled circular pipe sections under arbitrary loading. This formulation is
based on the nonlinear shell theory proposed by Rotter and Jumikis [78, 120, 161, 162] which retains
all terms of the nonlinear Green-Lagrange membrane strains while keeping bending strains linear. Here,
non-conventional GBT deformation modes are considered in the formulation which are necessary to
recover the transverse and shear membrane energies. Generally, this formulation is restricted to the range
of small-to-moderate rotations since it is based on the total Lagrangian description [17] for the reason of
simplicity.

In this chapter, the step-by-step formulation of a geometrical nonlinear GBT element is presented. Starting
from the approximation of the nonlinear response using a linear incremental procedure, the derivation
of the tangent stiffness matrices and the internal forces are presented based on the variation of the
internal energy which considers the nonlinear kinematic description of membrane strains. Here, the finite
element formulation of the linear and quadratic tangent stiffness matrix based on the third and fourth order
coupling tensors, and the derivation of the nonlinear membrane stress resultant following the fundamental
principles of GBT are presented. Finally, to illustrate the application and capabilities of the developed
GBT formulation, two numerical examples involving transverse and longitudinal bending are presented
to show the nonlinear relationship between bending and cross-sectional ovalization. For the purpose of
validation, these examples are compared with refined shell finite element models within the permissible
displacement range of the GBT formulation in both displacement and stress fields.
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Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

5.1 Linearization

In this chapter, the nonlinear response of the thin-walled circular pipe members is approximated using
a linear incremental iterative procedure. Here, the explanation of this procedure is presented based on
the lecture materials of Krätzig [85] and Könke [83]. The nonlinear equilibrium equation between the
internal forces F which are the nonlinear functions of the displacements V and the external applied loads
P can be defined as:

F(V) = P (5.1)

In Figure 5.1, the function F(V) can be approximated at the neighboring state V̄+
+
V using a Taylor series

expansion in equation (5.2).

P
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unknown 
response path,linear prediction

residual forces which
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�
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B

 F(V)

Figure 5.1: Initial State (IS) and unknown Neighboring State (NS) on the nonlinear response path [83].

F(V̄ +
+
V) = F(V̄) + F,V̄(V̄)

+
V + F,V̄V̄(V̄) 1

2!
+
V

2
+ . . . (5.2)

Considering the first two terms of the Taylor series expansion in equation (5.2), the function F(V) is
approximated at the increment

+
V using a linear function which is the slope of the function F(V) at

V̄. However, since this linear prediction of the neighboring state is not in equilibrium, an iteration is
required until the equilibrium between the internal forces and external loads is obtained. In this study,
the Newton-Raphson solver is used for the iteration.

Substituting the first two terms of equation (5.2) into equation (5.1), the linearized stiffness relation is
expressed at the neighboring state as:

F(V̄) + F,V̄(V̄)
+
V = P̄ +

+
P (5.3)

In equation (5.3) , the function F,V̄(V̄) is called tangential stiffness and represented as KT and the
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5.2: Kinematic description

function F(V̄) is called internal forces and represented as Fint. Two steps are involved in solving for
the load increment

+
P. In the first step, since the system is already in equilibrium at the initial state

Fint = P̄, the new incremental displacement is calculated for the load increment KT
+
V =

+
P. In the second

step, since the new neighboring state is not in equilibrium, the incremental displacement
+
V is iterated

KT
+
V = (P̄ +

+
P) − Fint without the additional load increment until the equilibrium is achieved.

Here, the tangential stiffness matrix KT is derived from the principle of virtual works. Applying the same
incremental procedure, the nonlinear kinematic relation at the neighboring state can be defined as:

𝜺(V) = 𝜺(V̄ +
+
V) (5.4)

Using the first three terms of the Taylor series expansion the strain at the incremental displacement
+
V can

be approximated as:

𝜺(V̄ +
+
V) = 𝜺(V̄) + 𝜺,V̄(V̄)

+
V + 𝜺,V̄V̄(V̄) 1

2!
+
V

2
(5.5)

𝜺(V) = −
𝜺 + +

𝜺 + ++
𝜺 (5.6)

where −
𝜺 is arbitrarily dependent on V̄ and independent of

+
V, +

𝜺 is arbitrarily dependent on V̄ and linearly
dependent on

+
V and ++

𝜺 is arbitrarily dependent on V̄ and quadratically dependent on
+
V.

In equation (5.5), taking the third term of the Taylor series guaranties a quadratic convergence of the
Newton-Raphson solver. The detailed formulation of the GBT tangent stiffness matrix based on the
nonlinear kinematic relations and the principle of virtual works is presented in the next sections.

5.2 Kinematic description

The nonlinear strain-displacement relation for the thin-walled circular pipe shown in Figure 5.2 is based
on the thin shell nonlinear kinematic description proposed by Rotter and Jumikis [78, 120] which retains
all nonlinear terms, large and small. Here, the nonlinear membrane strains in equations (5.7) to (5.9) are
defined using the Green-Lagrange strain measurement which is applicable for moderate rotations. Since
in thin-walled sections the membrane energy is dominant compared to the plate in bending energy, the
bending strains are assumed to be linear and the same as the ones defined in equations (2.11) to (2.13).

Nonlinear membrane strains:

𝜀M
𝑥 = 𝑢,𝑥 +

1
2

(
𝑢2
,𝑥 + 𝑣2

,𝑥 + 𝑤2
,𝑥

)
(5.7)

𝜀M
𝜃 =

𝑣, 𝜃 + 𝑤
𝑟

+ 1
2𝑟2

(
𝑢2
, 𝜃 + (𝑣, 𝜃 + 𝑤)2 + (𝑤, 𝜃 − 𝑣)2

)
(5.8)

𝛾M
𝑥𝜃 =

𝑢, 𝜃

𝑟
+ 𝑣,𝑥 +

1
𝑟

(
𝑢,𝑥𝑢, 𝜃 + 𝑣,𝑥 (𝑣, 𝜃 + 𝑤) + 𝑤,𝑥 (𝑤, 𝜃 − 𝑣)

)
(5.9)
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q q

q

t

Figure 5.2: Thin-walled circular pipe section with global (𝑋 , 𝑌 , 𝑍) and local (𝑥 ∈ [−𝐿/2, 𝐿/2],
𝜃 ∈ [0, 2𝜋], 𝑧 ∈ [−𝑡/2, 𝑡/2]) coordinate systems.

Based on the linearization procedure explained in the previous section, each displacement is divided into
two states: 𝑢̄, 𝑣̄ and 𝑤̄ which are concerning the initial displacement state; and +

𝑢,
+
𝑣 and +

𝑤 which are
concerning the incremental displacement state.

𝜀M
𝑥 = 𝑢̄,𝑥 +

+
𝑢,𝑥 +

1
2

(
(𝑢̄,𝑥 +

+
𝑢,𝑥)2 + (𝑣̄,𝑥 +

+
𝑣,𝑥)2 + (𝑤̄,𝑥 +

+
𝑤,𝑥)2

)
=

−
𝜀𝑥 +

+
𝜀𝑥 +

++
𝜀 𝑥 (5.10)

𝜀M
𝜃 =

(𝑣̄, 𝜃 +
+
𝑣, 𝜃 ) + (𝑤̄ + +

𝑤)
𝑟

+ 1
2𝑟2

(
(𝑢̄, 𝜃 +

+
𝑢, 𝜃 )2 + (𝑣̄, 𝜃 +

+
𝑣, 𝜃 + 𝑤̄ + +

𝑤)2 + (𝑤̄, 𝜃 +
+
𝑤, 𝜃 − 𝑣̄ −

+
𝑣)2

)
=

−
𝜀𝜃 +

+
𝜀𝜃 +

++
𝜀 𝜃 (5.11)

𝛾M
𝑥𝜃 =

(𝑢̄, 𝜃 +
+
𝑢, 𝜃 )

𝑟
+ (𝑣̄,𝑥 +

+
𝑣,𝑥)

+ 1
𝑟

(
(𝑢̄,𝑥 +

+
𝑢,𝑥) (𝑢̄, 𝜃 +

+
𝑢, 𝜃 ) + (𝑣̄,𝑥 +

+
𝑣,𝑥)

(
𝑣̄, 𝜃 +

+
𝑣, 𝜃 + 𝑤̄ + +

𝑤
)
+ (𝑤̄,𝑥 +

+
𝑤,𝑥)

(
𝑤̄, 𝜃 +

+
𝑤, 𝜃 − 𝑣̄ −

+
𝑣
) )

=
−
𝛾𝑥𝜃 +

+
𝛾𝑥𝜃 +

++
𝛾 𝑥𝜃 (5.12)

where:

−
𝜀𝑥 = 𝑢̄,𝑥 +

𝑢̄,𝑥 𝑢̄,𝑥

2
+
𝑣̄,𝑥 𝑣̄,𝑥

2
+
𝑤̄,𝑥𝑤̄,𝑥

2
(5.13)

+
𝜀𝑥 =

+
𝑢,𝑥 + 𝑢̄,𝑥

+
𝑢,𝑥 + 𝑣̄,𝑥

+
𝑣,𝑥 + 𝑤̄,𝑥

+
𝑤,𝑥 (5.14)

++
𝜀𝑥 =

+
𝑢,𝑥

+
𝑢,𝑥

2
+

+
𝑣,𝑥

+
𝑣,𝑥

2
+

+
𝑤,𝑥

+
𝑤,𝑥

2
(5.15)

−
𝜀𝜃 =

𝑣̄, 𝜃 + 𝑤̄
𝑟

+
𝑢̄, 𝜃 𝑢̄, 𝜃

2𝑟2 +
𝑣̄, 𝜃 𝑣̄, 𝜃 + 2𝑣̄, 𝜃 𝑤̄ + 𝑤̄𝑤̄

2𝑟2 +
𝑤̄, 𝜃 𝑤̄, 𝜃 − 2𝑤̄, 𝜃 𝑣̄ + 𝑣̄𝑣̄

2𝑟2 (5.16)

+
𝜀𝜃 =

+
𝑣, 𝜃 +

+
𝑤

𝑟
+
𝑢̄, 𝜃

+
𝑢, 𝜃

𝑟2 +
𝑣̄, 𝜃

+
𝑣, 𝜃 + 𝑣̄, 𝜃

+
𝑤 + 𝑤̄+

𝑣, 𝜃 + 𝑤̄
+
𝑤

𝑟2 +
𝑤̄, 𝜃

+
𝑤, 𝜃 − 𝑤̄, 𝜃

+
𝑣 − 𝑣̄ +

𝑤, 𝜃 + 𝑣̄
+
𝑣

𝑟2 (5.17)

++
𝜀𝜃 =

+
𝑢, 𝜃

+
𝑢, 𝜃

2𝑟2 +
+
𝑣, 𝜃

+
𝑣, 𝜃 + 2+

𝑣, 𝜃
+
𝑤 + +

𝑤
+
𝑤

2𝑟2 +
+
𝑤, 𝜃

+
𝑤, 𝜃 − 2 +

𝑤, 𝜃
+
𝑣 + +

𝑣
+
𝑣

2𝑟2 (5.18)

−
𝛾𝑥𝜃 =

𝑢̄, 𝜃

𝑟
+ 𝑣̄,𝑥 +

𝑢̄,𝑥 𝑢̄, 𝜃

𝑟
+
𝑣̄,𝑥 𝑣̄, 𝜃 + 𝑣̄,𝑥𝑤̄ + 𝑤̄,𝑥𝑤̄, 𝜃 − 𝑤̄,𝑥 𝑣̄

𝑟
(5.19)

97



5.3: Variation of the internal energy

+
𝛾𝑥𝜃 =

+
𝑢, 𝜃

𝑟
+ +
𝑣,𝑥 +

𝑢̄,𝑥
+
𝑢, 𝜃 +

+
𝑢,𝑥 𝑢̄, 𝜃

𝑟
+
𝑣̄,𝑥

+
𝑣, 𝜃 + 𝑣̄,𝑥

+
𝑤 + 𝑤̄,𝑥

+
𝑤, 𝜃 − 𝑤̄,𝑥

+
𝑣

𝑟

+
+
𝑣,𝑥 𝑣̄, 𝜃 +

+
𝑣,𝑥𝑤̄ + +

𝑤,𝑥𝑤̄, 𝜃 −
+
𝑤,𝑥 𝑣̄

𝑟
(5.20)

++
𝛾𝑥𝜃 =

+
𝑢,𝑥

+
𝑢, 𝜃

𝑟
+

+
𝑣,𝑥

+
𝑣, 𝜃 +

+
𝑣,𝑥

+
𝑤 + +

𝑤,𝑥
+
𝑤, 𝜃 −

+
𝑤,𝑥

+
𝑣

𝑟
(5.21)

Strain terms with −... are only dependent on the initial displacement and have no variation,whereas
strain terms with +... and ++... are linearly and quadratically dependent on the incremental displacement,
respectively, and have variation in their incremental components, which gives:

𝛿
+
𝜀𝑥 = 𝛿

+
𝑢,𝑥 + 𝑢̄,𝑥𝛿

+
𝑢,𝑥 + 𝑣̄,𝑥𝛿

+
𝑣,𝑥 + 𝑤̄,𝑥𝛿

+
𝑤,𝑥 (5.22)

𝛿
++
𝜀𝑥 =

+
𝑢,𝑥𝛿

+
𝑢,𝑥 +

+
𝑣,𝑥𝛿

+
𝑣,𝑥 +

+
𝑤,𝑥𝛿

+
𝑤,𝑥 (5.23)

𝛿
+
𝜀𝜃 =

𝛿
+
𝑣, 𝜃 + 𝛿

+
𝑤

𝑟
+
𝑢̄, 𝜃𝛿

+
𝑢, 𝜃

𝑟2 +
𝑣̄, 𝜃𝛿

+
𝑣, 𝜃 + 𝑣̄, 𝜃𝛿

+
𝑤 + 𝑤̄𝛿+𝑣, 𝜃 + 𝑤̄𝛿

+
𝑤

𝑟2

+
𝑤̄, 𝜃𝛿

+
𝑤, 𝜃 − 𝑤̄, 𝜃𝛿

+
𝑣 − 𝑣̄𝛿 +

𝑤, 𝜃 + 𝑣̄𝛿
+
𝑣

𝑟2 (5.24)

𝛿
++
𝜀𝜃 =

+
𝑢, 𝜃𝛿

+
𝑢, 𝜃

𝑟2 +
+
𝑣, 𝜃𝛿

+
𝑣, 𝜃 +

+
𝑣, 𝜃𝛿

+
𝑤 + +

𝑤𝛿
+
𝑣, 𝜃 +

+
𝑤𝛿

+
𝑤

𝑟2 +
+
𝑤, 𝜃𝛿

+
𝑤, 𝜃 −

+
𝑤, 𝜃𝛿

+
𝑣 − +

𝑣𝛿
+
𝑤, 𝜃 +

+
𝑣𝛿

+
𝑣

𝑟2 (5.25)

𝛿
+
𝛾𝑥𝜃 =

𝛿
+
𝑢, 𝜃

𝑟
+ 𝛿+𝑣,𝑥 +

𝑢̄,𝑥𝛿
+
𝑢, 𝜃 + 𝛿

+
𝑢,𝑥 𝑢̄, 𝜃

𝑟
+
𝑣̄,𝑥𝛿

+
𝑣, 𝜃 + 𝑣̄,𝑥𝛿

+
𝑤 + 𝑤̄,𝑥𝛿

+
𝑤, 𝜃 − 𝑤̄,𝑥𝛿

+
𝑣

𝑟

+
𝛿
+
𝑣,𝑥 𝑣̄, 𝜃 + 𝛿

+
𝑣,𝑥𝑤̄ + 𝛿 +

𝑤,𝑥𝑤̄, 𝜃 − 𝛿
+
𝑤,𝑥 𝑣̄

𝑟
(5.26)

𝛿
++
𝛾𝑥𝜃 =

𝛿
+
𝑢,𝑥

+
𝑢, 𝜃 +

+
𝑢,𝑥𝛿

+
𝑢, 𝜃

𝑟
+

+
𝑣,𝑥𝛿

+
𝑣, 𝜃 +

+
𝑣,𝑥𝛿

+
𝑤 + +

𝑤,𝑥𝛿
+
𝑤, 𝜃 −

+
𝑤,𝑥𝛿

+
𝑣

𝑟

+
𝛿
+
𝑣,𝑥

+
𝑣, 𝜃 + 𝛿

+
𝑣,𝑥

+
𝑤 + 𝛿 +

𝑤,𝑥
+
𝑤, 𝜃 − 𝛿

+
𝑤,𝑥

+
𝑣

𝑟
(5.27)

5.3 Variation of the internal energy

The virtual work due to internal forces is defined as the volume integral of the products of all stress
components by the respective virtual strains:

𝛿𝑈int =

∫
𝑉

(
𝜎𝑥𝛿𝜀𝑥 + 𝜎𝜃𝛿𝜀𝜃 + 𝜏𝑥𝜃𝛿𝛾𝑥𝜃

)
d𝑉 (5.28)

For an isotropic, linearly elastic material, the constitutive relations between stresses and strains are
expressed by means of the Young’s modulus 𝐸 , the shear modulus 𝐺, and the Poisson’s ratio 𝜇:

𝜎𝑥 =
𝐸

1 − 𝜇2 (𝜀𝑥 + 𝜇𝜀𝜃 ) (5.29) 𝜎𝜃 =
𝐸

1 − 𝜇2 (𝜀𝜃 + 𝜇𝜀𝑥) (5.30)

𝜏𝑥𝜃 = 𝐺𝛾𝑥𝜃 (5.31)
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Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

In the next subsections, the variation of the internal energy is formulated based on the fundamental
principles of GBT considering the longitudinal, transversal and shear internal energies separately.

𝛿𝑈int =

∫
𝑉

𝜎𝑥𝛿𝜀𝑥d𝑉 +
∫
𝑉

𝜎𝜃𝛿𝜀𝜃d𝑉 +
∫
𝑉

𝜏𝑥𝜃𝛿𝛾𝑥𝜃d𝑉 = 𝛿𝑈𝑥 + 𝛿𝑈𝜃 + 𝛿𝑈𝑥𝜃 (5.32)

5.3.1 Variation of the longitudinal internal energy

Considering the constitutive relation in equation (5.29) and the incremental longitudinal strain in equation
(5.10) the variation of longitudinal internal energy extracted from equation (5.32) can be expressed as:

𝛿𝑈𝑥 =

∫
𝑉

𝜎𝑥𝛿𝜀𝑥d𝑉 =

∫
𝑉

𝐸

1 − 𝜇2

(−
𝜀𝑥 +

+
𝜀𝑥 +

++
𝜀 𝑥 + 𝜇(

−
𝜀𝜃 +

+
𝜀𝜃 +

++
𝜀 𝜃 )

) ( +
𝛿𝜀𝑥 +

++
𝛿𝜀𝑥

)
d𝑉

=
𝐸

1 − 𝜇2

∫
𝑉

(−
𝜀𝑥𝛿

+
𝜀𝑥 +

+
𝜀𝑥𝛿

+
𝜀𝑥 +

−
𝜀𝑥𝛿

++
𝜀 𝑥 + 𝜇

(−
𝜀𝜃𝛿

+
𝜀𝑥 +

+
𝜀𝜃𝛿

+
𝜀𝑥 +

−
𝜀𝜃𝛿

++
𝜀 𝑥

) )
d𝑉 (5.33)

In equation (5.33), the first term −
𝜀𝑥𝛿

+
𝜀𝑥 corresponds to the virtual work of the initial stress at the initial

state. This term gives the internal forces 𝐹int which should be in equilibrium with the external forces 𝐹ext

through the iteration procedure. The second term +
𝜀𝑥𝛿

+
𝜀𝑥 is the virtual work of the initial displacement

and can be split up into the linear stiffness matrix [𝐾L] (independent of the displacement), the linear
initial displacement matrices [𝐾uL] (linearly dependent on the initial displacement), and quadratic initial
displacement matrices [𝐾uN] (quadratically dependent on the initial displacement). The third term −

𝜀𝑥𝛿
++
𝜀 𝑥

represents the virtual work of the initial stress linearly and quadratically dependent on the incremental
displacement, which leads to the linear [𝐾𝜎L] and quadratic [𝐾𝜎N] initial stress stiffness matrices. The
rest of the higher order terms such as +

𝜀𝑥𝛿
++
𝜀 𝑥 , ++

𝜀 𝑥𝛿
+
𝜀𝑥 , and ++

𝜀 𝑥𝛿
++
𝜀 𝑥 are neglected since they are much

smaller than the first three terms. Here, the tangent stiffness matrix [𝐾T] can be expressed as a summation
of the stiffness matrices.

[𝐾T] = [𝐾L] + [𝐾uL] + [𝐾uN] + [𝐾𝜎L] + [𝐾𝜎N] (5.34)

Substituting the strain-displacement kinematic relations in equations (5.13), (5.14), (5.22) and (5.23) into
equation (5.33) and neglecting the terms related to Poisson effect for the reason of simplicity, the variation
of the longitudinal internal energy can be expressed as:

𝛿𝑈𝑥 =
𝐸

1 − 𝜇2

( ∫
𝑉

(
𝑢̄,𝑥 +

𝑢̄,𝑥 𝑢̄,𝑥

2
+
𝑣̄,𝑥 𝑣̄,𝑥

2
+
𝑤̄,𝑥𝑤̄,𝑥

2

) (
𝛿
+
𝑢,𝑥 + 𝑢̄,𝑥𝛿

+
𝑢,𝑥 + 𝑣̄,𝑥𝛿

+
𝑣,𝑥 + 𝑤̄,𝑥𝛿

+
𝑤,𝑥

)
d𝑉

+
∫
𝑉

(+
𝑢,𝑥 + 𝑢̄,𝑥

+
𝑢,𝑥 + 𝑣̄,𝑥

+
𝑣,𝑥 + 𝑤̄,𝑥

+
𝑤,𝑥

) (
𝛿
+
𝑢,𝑥 + 𝑢̄,𝑥𝛿

+
𝑢,𝑥 + 𝑣̄,𝑥𝛿

+
𝑣,𝑥 + 𝑤̄,𝑥𝛿

+
𝑤,𝑥

)
d𝑉

+
∫
𝑉

(
𝑢̄,𝑥 +

𝑢̄,𝑥 𝑢̄,𝑥

2
+
𝑣̄,𝑥 𝑣̄,𝑥

2
+
𝑤̄,𝑥𝑤̄,𝑥

2

) (+
𝑢,𝑥𝛿

+
𝑢,𝑥 +

+
𝑣,𝑥𝛿

+
𝑣,𝑥 +

+
𝑤,𝑥𝛿

+
𝑤,𝑥

)
d𝑉

)
(5.35)
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Introducing the GBT’s separation of variable assumptions and the modes superposition concept, given in
equations (2.2), (2.3) and (2.4), the domain of integration in equation (5.35) can be split into longitudinal
and transversal directions, 𝑥 and 𝜃, respectively. This gives:

𝛿𝑈𝑥
=

∑︁
𝑖,𝑘

∫
𝐿

𝑖𝑘𝐶 𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

}
𝐾L

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑘𝐶1
𝑗𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑘𝐶2
𝑗𝑉̄,𝑥𝑥

𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐶1
𝑗𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐶2
𝑗𝑉̄,𝑥𝑥

𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥


𝐾uL

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐶1
𝑗𝑉̄,𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐶2
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥𝑥
𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑙𝑘 𝑗𝑖𝐶12
𝑗𝑉̄,𝑥

𝑙𝑉̄,𝑥𝑥
𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐶12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥


𝐾uN

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐶1
𝑗𝑉̄,𝑥𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐶2
𝑗𝑉̄,𝑥𝑥

𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

}
𝐾𝜎L

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐶1
2

𝑗𝑉̄,𝑥
𝑙𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐶2
2

𝑗𝑉̄,𝑥𝑥
𝑙𝑉̄,𝑥𝑥

𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐶12
2

𝑗𝑉̄,𝑥𝑥
𝑙𝑉̄,𝑥𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖𝑘 𝑗𝑙𝐶12
2

𝑗𝑉̄,𝑥
𝑙𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥


𝐾𝜎N

+
∑︁
𝑖,𝑘

∫
𝐿

𝑖𝑘𝐶 𝑖𝑉̄,𝑥𝑥 𝛿
𝑘
+
𝑉 ,𝑥𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐶1
𝑗𝑉̄,𝑥𝑥

𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐶2
𝑗𝑉̄,𝑥𝑥

𝑖𝑉̄,𝑥𝑥 𝛿
𝑘
+
𝑉 ,𝑥𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐶1
2

𝑗𝑉̄,𝑥
𝑖𝑉̄,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐶2
2

𝑗𝑉̄,𝑥𝑥
𝑖𝑉̄,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐶1
2

𝑗𝑉̄,𝑥
𝑙𝑉̄,𝑥

𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐶2
2

𝑗𝑉̄,𝑥𝑥
𝑙𝑉̄,𝑥𝑥

𝑖𝑉̄,𝑥𝑥 𝛿
𝑘
+
𝑉 ,𝑥𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖𝑘 𝑗𝑙𝐶12
2

𝑗𝑉̄,𝑥
𝑙𝑉̄,𝑥

𝑖𝑉̄,𝑥𝑥 𝛿
𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐶12
2

𝑗𝑉̄,𝑥𝑥
𝑙𝑉̄,𝑥𝑥

𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 ,𝑥 d𝑥



𝐹int

(5.36)
with the section properties

𝑖𝑘𝐶 = 𝑄

∮
𝑖𝑢 (𝜃)𝑘𝑢 (𝜃) 𝑟 𝑑𝜃 (5.37)

𝑗𝑖𝑘𝐶1 = 𝑄

∮
𝑗𝑢 (𝜃)

(
𝑖𝑣 (𝜃)𝑘𝑣 (𝜃) + 𝑖𝑤 (𝜃)𝑘𝑤(𝜃)

)
𝑟 𝑑𝜃 (5.38)

𝑗𝑖𝑘𝐶2 = 𝑄

∮
𝑗𝑢 (𝜃) 𝑖𝑢 (𝜃) 𝑘𝑢 (𝜃) 𝑟 𝑑𝜃 (5.39)
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𝑗𝑙𝑖𝑘𝐶1 = 𝑄

∮ (
𝑗𝑣 (𝜃)𝑙𝑣 (𝜃) + 𝑗𝑤 (𝜃)𝑙𝑤(𝜃)

) (
𝑖𝑣 (𝜃)𝑘𝑣 (𝜃) + 𝑖𝑤 (𝜃)𝑘𝑤(𝜃)

)
𝑟 𝑑𝜃 (5.40)

𝑗𝑙𝑖𝑘𝐶2 = 𝑄

∮
𝑗𝑢 (𝜃)𝑙𝑢 (𝜃)𝑖𝑢 (𝜃)𝑘𝑢 (𝜃) 𝑟 𝑑𝜃 (5.41)

𝑗𝑙𝑖𝑘𝐶12 = 𝑄

∮
𝑗𝑢 (𝜃)𝑙𝑢 (𝜃)

(
𝑖𝑣 (𝜃)𝑘𝑣 (𝜃) + 𝑖𝑤 (𝜃)𝑘𝑤(𝜃)

)
𝑟 𝑑𝜃 (5.42)

In equation (5.35)’s summation notation
∑

𝑖,𝑘, · · ·
is a compact representation of

∑
𝑖

∑
𝑘

· · · .

The coefficients in equations (5.37) to (5.42) are described as:

• 𝑖𝑘𝐶 is a second-order tensor associated with the linear stiffness matrix [𝐾L] similar to equation
(2.20),

• 𝑖 𝑗𝑘𝐶1 and 𝑖 𝑗𝑘𝐶2 are third-order tensors associated with the linear initial stress [𝐾𝜎L] and displace-
ment stiffness matrix [𝐾uL],

• 𝑖 𝑗𝑘𝑙𝐶1, 𝑖 𝑗𝑘𝑙𝐶2, and 𝑖 𝑗𝑘𝑙𝐶12 are fourth-order tensors associated with the quadratic initial stress [𝐾𝜎N]
and displacement stiffness matrix [𝐾𝜎N].

In these coefficients, only the linear and nonlinear stiffness contributions of the membrane are shown.
The plate contributions are kept linear and similar to the ones derived in Chapter 2.

5.3.2 Variation of the transverse internal energy

Similarly, the variation of the transverse internal energy can be formulated as:

𝛿𝑈𝜃 =

∫
𝑉

𝜎𝜃𝛿𝜀𝜃d𝑉 =

∫
𝑉

𝐸

1 − 𝜇2

(−
𝜀𝜃 +

+
𝜀𝜃 +

++
𝜀 𝜃 + 𝜇(

−
𝜀𝑥 +

+
𝜀𝑥 +

++
𝜀 𝑥)

) ( +
𝛿𝜀𝜃 +

++
𝛿𝜀𝜃

)
d𝑉

=
𝐸

1 − 𝜇2

∫
𝑉

(−
𝜀𝜃𝛿

+
𝜀𝜃 +

+
𝜀𝜃𝛿

+
𝜀𝜃 +

−
𝜀𝜃𝛿

++
𝜀 𝜃 + 𝜇

(−
𝜀𝑥𝛿

+
𝜀𝜃 +

+
𝜀𝑥𝛿

+
𝜀𝜃 +

−
𝜀𝑥𝛿

++
𝜀 𝜃

) )
d𝑉 (5.43)

Substituting the strain-displacement kinematic relations in equations (5.16), (5.17), (5.24) and (5.25) into
equation (5.43) and neglecting the terms related to Poisson effect for the reason of simplicity, the variation
of the transverse internal energy can be expressed as:

𝛿𝑈𝜃 =
𝐸

1 − 𝜇2
©­«
∫
𝑉

−
𝜀𝜃𝛿

+
𝜀𝜃d𝑉 +

∫
𝑉

+
𝜀𝜃𝛿

+
𝜀𝜃d𝑉 +

∫
𝑉

−
𝜀𝜃𝛿

++
𝜀 𝜃d𝑉ª®¬ = 𝛿𝑈𝜃 (int) + 𝛿𝑈𝜃 (u) + 𝛿𝑈𝜃 (𝜎) (5.44)

where:

𝛿𝑈𝜃 (int) =
𝐸

1 − 𝜇2

∫
𝑉

(
𝑣̄, 𝜃 + 𝑤̄
𝑟

+
𝑢̄, 𝜃 𝑢̄, 𝜃

2𝑟2 +
𝑣̄, 𝜃 𝑣̄, 𝜃 + 2𝑣̄, 𝜃 𝑤̄ + 𝑤̄𝑤̄

2𝑟2 +
𝑤̄, 𝜃 𝑤̄, 𝜃 − 2𝑤̄, 𝜃 𝑣̄ + 𝑣̄𝑣̄

2𝑟2

)
×

(
𝛿
+
𝑣, 𝜃 + 𝛿

+
𝑤

𝑟
+
𝑢̄, 𝜃𝛿

+
𝑢, 𝜃

𝑟2 +
𝑣̄, 𝜃𝛿

+
𝑣, 𝜃 + 𝑣̄, 𝜃𝛿

+
𝑤 + 𝑤̄𝛿+𝑣, 𝜃 + 𝛿

+
𝑤𝑤̄

𝑟2 +
𝑤̄, 𝜃𝛿

+
𝑤, 𝜃 − 𝑤̄, 𝜃𝛿

+
𝑣 − 𝑣̄𝛿 +

𝑤, 𝜃 + 𝑣̄𝛿
+
𝑣

𝑟2

)
d𝑉

(5.45)
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5.3: Variation of the internal energy

𝛿𝑈𝜃 (u) =
𝐸

1 − 𝜇2

∫
𝑉

( +
𝑣, 𝜃 +

+
𝑤

𝑟
+
𝑢̄, 𝜃

+
𝑢, 𝜃

𝑟2 +
𝑣̄, 𝜃

+
𝑣, 𝜃 + 𝑣̄, 𝜃

+
𝑤 + 𝑤̄+

𝑣, 𝜃 +
+
𝑤𝑤̄

𝑟2 +
𝑤̄, 𝜃

+
𝑤, 𝜃 − 𝑤̄, 𝜃

+
𝑣 − 𝑣̄ +

𝑤, 𝜃 + 𝑣̄
+
𝑣

𝑟2

)
×

(
𝛿
+
𝑣, 𝜃 + 𝛿

+
𝑤

𝑟
+
𝑢̄, 𝜃𝛿

+
𝑢, 𝜃

𝑟2 +
𝑣̄, 𝜃𝛿

+
𝑣, 𝜃 + 𝑣̄, 𝜃𝛿

+
𝑤 + 𝑤̄𝛿+𝑣, 𝜃 + 𝛿

+
𝑤𝑤̄

𝑟2

+
𝑤̄, 𝜃𝛿

+
𝑤, 𝜃 − 𝑤̄, 𝜃𝛿

+
𝑣 − 𝑣̄𝛿 +

𝑤, 𝜃 + 𝑣̄𝛿
+
𝑣

𝑟2

)
d𝑉 (5.46)

𝛿𝑈𝜃 (𝜎) =
𝐸

1 − 𝜇2

∫
𝑉

(
𝑣̄, 𝜃 + 𝑤̄
𝑟

+
𝑢̄, 𝜃 𝑢̄, 𝜃

2𝑟2 +
𝑣̄, 𝜃 𝑣̄, 𝜃 + 2𝑣̄, 𝜃 𝑤̄ + 𝑤̄𝑤̄

2𝑟2 +
𝑤̄, 𝜃 𝑤̄, 𝜃 − 2𝑤̄, 𝜃 𝑣̄ + 𝑣̄𝑣̄

2𝑟2

)
×

( +
𝑢, 𝜃𝛿

+
𝑢, 𝜃

𝑟2 +
+
𝑣, 𝜃𝛿

+
𝑣, 𝜃 +

+
𝑣, 𝜃𝛿

+
𝑤 + 𝛿+𝑣, 𝜃

+
𝑤 + +

𝑤𝛿
+
𝑤

𝑟2 +
+
𝑤, 𝜃𝛿

+
𝑤, 𝜃 −

+
𝑤, 𝜃𝛿

+
𝑣 − 𝛿 +

𝑤, 𝜃
+
𝑣 + +

𝑣𝛿
+
𝑣

𝑟2

)
d𝑉 (5.47)

Introducing GBT’s separation of variable assumptions and modes superposition concept, given in equa-
tions (2.2) to (2.4), the domain of integration in equations (5.45) to (5.47) can be split into longitudinal
and transversal directions 𝑥 and 𝜃, respectively. This gives:

𝛿𝑈𝜃 (u)
=

∑︁
𝑖,𝑘

∫
𝐿

𝑖𝑘𝐵 𝑖
+
𝑉 𝛿𝑘

+
𝑉 d𝑥

}
𝐾L

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑘𝐵1
𝑗𝑉̄ 𝑖

+
𝑉 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑘𝐵2
𝑗𝑉̄,𝑥

𝑖
+
𝑉 𝛿𝑘

+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐵1
𝑗𝑉̄ 𝑖

+
𝑉 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐵2
𝑗𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 d𝑥


𝐾uL

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐵1
𝑗𝑉̄ 𝑙𝑉̄ 𝑖

+
𝑉 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐵2
𝑗𝑉̄,𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑙𝑘 𝑗𝑖𝐵12
𝑗𝑉̄ 𝑙𝑉̄,𝑥

𝑖
+
𝑉 𝛿𝑘

+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐵12
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 d𝑥


𝐾uN

(5.48)

𝛿𝑈𝜃 (𝜎)
=

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐵1
𝑗𝑉̄ 𝑖

+
𝑉 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐵2
𝑗𝑉̄ 𝑖

+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥

}
𝐾𝜎L

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐵1
2

𝑗𝑉̄ 𝑙𝑉̄ 𝑖
+
𝑉 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐵2
2

𝑗𝑉̄,𝑥
𝑙𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐵12
2

𝑗𝑉̄,𝑥
𝑙𝑉̄,𝑥

𝑖
+
𝑉 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖𝑘 𝑗𝑙𝐵12
2

𝑗𝑉̄ 𝑙𝑉̄ 𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥


𝐾𝜎N

(5.49)
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𝛿𝑈𝜃 (int) =
∑︁
𝑖,𝑘

∫
𝐿

𝑖𝑘𝐵 𝑖𝑉̄ 𝛿𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐵1
𝑗𝑉̄ 𝑖𝑉̄ 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐵2
𝑗𝑉̄ 𝑖𝑉̄,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐵1
2

𝑗𝑉̄ 𝑖𝑉̄ 𝛿𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐵2
2

𝑗𝑉̄,𝑥
𝑖𝑉̄,𝑥 𝛿

𝑘
+
𝑉 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐵1
2

𝑗𝑉̄ 𝑙𝑉̄ 𝑖𝑉̄ 𝛿𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐵2
2

𝑗𝑉̄,𝑥
𝑙𝑉̄,𝑥

𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖𝑘 𝑗𝑙𝐵12
2

𝑗𝑉̄ 𝑙𝑉̄ 𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐵12
2

𝑗𝑉̄,𝑥
𝑙𝑉̄,𝑥

𝑖𝑉̄ 𝛿𝑘
+
𝑉 d𝑥 (5.50)

with the section properties

𝑖𝑘𝐵 = 𝑄

∮ 𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)
𝑟

𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤(𝜃)
𝑟

𝑟 𝑑𝜃 (5.51)

𝑗𝑖𝑘𝐵1 = 𝑄

∮ 𝑗𝑣, 𝜃 (𝜃) + 𝑗𝑤(𝜃)
𝑟

( 𝑖𝑣, 𝜃 (𝜃)𝑘𝑣, 𝜃 (𝜃) + 𝑖𝑣, 𝜃 (𝜃)𝑘𝑤(𝜃) + 𝑖𝑤(𝜃)𝑘𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)𝑘𝑤(𝜃)
𝑟2

+
𝑖𝑤, 𝜃 (𝜃)𝑘𝑤, 𝜃 (𝜃) − 𝑖𝑤, 𝜃 (𝜃)𝑘𝑣(𝜃) − 𝑖𝑣(𝜃)𝑘𝑤, 𝜃 (𝜃) + 𝑖𝑣(𝜃)𝑘𝑣(𝜃)

𝑟2

)
𝑟 𝑑𝜃 (5.52)

𝑗𝑖𝑘𝐵2 = 𝑄

∮ 𝑗𝑣, 𝜃 (𝜃) + 𝑗𝑤(𝜃)
𝑟

𝑖𝑢, 𝜃 (𝜃)𝑘𝑢, 𝜃 (𝜃)
𝑟2 𝑟 𝑑𝜃 (5.53)

𝑗𝑙𝑖𝑘𝐵1 = 𝑄

∮ ( 𝑗𝑣, 𝜃 (𝜃)𝑙𝑣, 𝜃 (𝜃) + 𝑗𝑣, 𝜃 (𝜃)𝑙𝑤(𝜃) + 𝑗𝑤(𝜃)𝑙𝑣, 𝜃 (𝜃) + 𝑗𝑤(𝜃)𝑙𝑤(𝜃)
𝑟2

+
𝑗𝑤, 𝜃 (𝜃)𝑙𝑤, 𝜃 (𝜃) − 𝑗𝑤, 𝜃 (𝜃)𝑙𝑣(𝜃) − 𝑗𝑣(𝜃)𝑙𝑤, 𝜃 (𝜃) + 𝑗𝑣(𝜃)𝑙𝑣(𝜃)

𝑟2

)
×

( 𝑖𝑣, 𝜃 (𝜃)𝑘𝑣, 𝜃 (𝜃) + 𝑖𝑣, 𝜃 (𝜃)𝑘𝑤(𝜃) + 𝑖𝑤(𝜃)𝑘𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)𝑘𝑤(𝜃)
𝑟2

+
𝑖𝑤, 𝜃 (𝜃)𝑘𝑤, 𝜃 (𝜃) − 𝑖𝑤, 𝜃 (𝜃)𝑘𝑣(𝜃) − 𝑖𝑣(𝜃)𝑘𝑤, 𝜃 (𝜃) + 𝑖𝑣(𝜃)𝑘𝑣(𝜃)

𝑟2

)
𝑟 𝑑𝜃 (5.54)

𝑗𝑙𝑖𝑘𝐵2 = 𝑄

∮ 𝑗𝑢, 𝜃 (𝜃)𝑙𝑢, 𝜃 (𝜃)
𝑟2

𝑖𝑢, 𝜃 (𝜃)𝑘𝑢, 𝜃 (𝜃)
𝑟2 𝑟 𝑑𝜃 (5.55)

𝑗𝑙𝑖𝑘𝐵12 = 𝑄

∮ 𝑗𝑢, 𝜃 (𝜃)𝑙𝑢, 𝜃 (𝜃)
𝑟2

( 𝑖𝑣, 𝜃 (𝜃)𝑘𝑣, 𝜃 (𝜃) + 𝑖𝑣, 𝜃 (𝜃)𝑘𝑤(𝜃) + 𝑖𝑤(𝜃)𝑘𝑣, 𝜃 (𝜃) + 𝑖𝑤(𝜃)𝑘𝑤(𝜃)
𝑟2

+
𝑖𝑤, 𝜃 (𝜃)𝑘𝑤, 𝜃 (𝜃) − 𝑖𝑤, 𝜃 (𝜃)𝑘𝑣(𝜃) − 𝑖𝑣(𝜃)𝑘𝑤, 𝜃 (𝜃) + 𝑖𝑣(𝜃)𝑘𝑣(𝜃)

𝑟2

)
𝑟 𝑑𝜃 (5.56)

The coefficients in equations (5.51) to (5.56) are described as:

• 𝑖𝑘𝐵 is a second-order tensor associated with the linear stiffness matrix [𝐾L] similar to equation
(2.21),

• 𝑖 𝑗𝑘𝐵1 and 𝑖 𝑗𝑘𝐵2 are third-order tensors associated with the linear initial stress [𝐾𝜎L] and displace-
ment stiffness matrix [𝐾uL],

• 𝑖 𝑗𝑘𝑙𝐵1, 𝑖 𝑗𝑘𝑙𝐵2, and 𝑖 𝑗𝑘𝑙𝐵12 are fourth-order tensors associated with the quadratic initial stress [𝐾𝜎N]
and displacement stiffness matrix [𝐾𝜎N].
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5.3: Variation of the internal energy

5.3.3 Variation of the shear internal energy

Finally, the variation of the shear internal energy can be formulated as:

𝛿𝑈𝑥𝜃 =

∫
𝑉

𝜏𝑥𝜃 𝛿𝛾𝑥𝜃d𝑉 =

∫
𝑉

𝐺

(−
𝛾𝑥𝜃 +

+
𝛾𝑥𝜃 +

++
𝛾 𝑥𝜃

) ( +
𝛿𝛾𝑥𝜃 +

++
𝛿𝛾𝑥𝜃

)
d𝑉

= 𝐺

∫
𝑉

(−
𝛾𝑥𝜃𝛿

+
𝛾𝑥𝜃 +

+
𝛾𝑥𝜃𝛿

+
𝛾𝑥𝜃 +

−
𝛾𝑥𝜃𝛿

++
𝛾 𝑥𝜃

)
d𝑉 (5.57)

Substituting the strain-displacement kinematic relations in equations (5.19), (5.20), (5.26), and (5.27)
into equation (5.57), the variation of the shear internal energy can be expressed as:

𝛿𝑈𝑥𝜃 = 𝐺

∫
𝑉

−
𝛾𝑥𝜃𝛿

+
𝛾𝑥𝜃d𝑉 + 𝐺

∫
𝑉

+
𝛾𝑥𝜃𝛿

+
𝛾𝑥𝜃d𝑉 + 𝐺

∫
𝑉

−
𝛾𝑥𝜃𝛿

++
𝛾 𝑥𝜃d𝑉

= 𝛿𝑈𝑥𝜃 (int) + 𝛿𝑈𝑥𝜃 (u) + 𝛿𝑈𝑥𝜃 (𝜎) (5.58)

where:

𝛿𝑈𝑥𝜃 (u) = 𝐺

∫
𝑉

( +
𝑢, 𝜃

𝑟
+ +
𝑣,𝑥 +

𝑢̄,𝑥
+
𝑢, 𝜃 +

+
𝑢,𝑥 𝑢̄, 𝜃

𝑟
+
𝑣̄,𝑥

+
𝑣, 𝜃 + 𝑣̄,𝑥

+
𝑤 + 𝑤̄,𝑥

+
𝑤, 𝜃 − 𝑤̄,𝑥

+
𝑣

𝑟

+
+
𝑣,𝑥 𝑣̄, 𝜃 +

+
𝑣,𝑥𝑤̄ + +

𝑤,𝑥𝑤̄, 𝜃 −
+
𝑤,𝑥 𝑣̄

𝑟

)
×

(
𝛿
+
𝑢, 𝜃

𝑟
+ 𝛿+𝑣,𝑥 +

𝑢̄,𝑥𝛿
+
𝑢, 𝜃 + 𝛿

+
𝑢,𝑥 𝑢̄, 𝜃

𝑟

𝑣̄,𝑥𝛿
+
𝑣, 𝜃 + 𝑣̄,𝑥𝛿

+
𝑤 + 𝑤̄,𝑥𝛿

+
𝑤, 𝜃 − 𝑤̄,𝑥𝛿

+
𝑣

𝑟

+
𝛿
+
𝑣,𝑥 𝑣̄, 𝜃 + 𝛿

+
𝑣,𝑥𝑤̄ + 𝛿 +

𝑤,𝑥𝑤̄, 𝜃 − 𝛿
+
𝑤,𝑥 𝑣̄

𝑟

)
d𝑉 (5.59)

𝛿𝑈𝑥𝜃 (𝜎) = 𝐺

∫
𝑉

(
𝑢̄, 𝜃

𝑟
+ 𝑣̄,𝑥 +

𝑢̄,𝑥 𝑢̄, 𝜃

𝑟
+
𝑣̄,𝑥 𝑣̄, 𝜃 + 𝑣̄,𝑥𝑤̄ + 𝑤̄,𝑥𝑤̄, 𝜃 − 𝑤̄,𝑥 𝑣̄

𝑟

)
×

(
𝛿
+
𝑢,𝑥

+
𝑢, 𝜃 +

+
𝑢,𝑥𝛿

+
𝑢, 𝜃

𝑟
+

+
𝑣,𝑥𝛿

+
𝑣, 𝜃 +

+
𝑣,𝑥𝛿

+
𝑤 + +

𝑤,𝑥𝛿
+
𝑤, 𝜃 −

+
𝑤,𝑥𝛿

+
𝑣

𝑟

+
𝛿
+
𝑣,𝑥

+
𝑣, 𝜃 + 𝛿

+
𝑣,𝑥

+
𝑤 + 𝛿 +

𝑤,𝑥
+
𝑤, 𝜃 − 𝛿

+
𝑤,𝑥

+
𝑣

𝑟

)
d𝑉 (5.60)

𝛿𝑈𝑥𝜃 (int) = 𝐺

∫
𝑉

(
𝑢̄, 𝜃

𝑟
+ 𝑣̄,𝑥 +

𝑢̄,𝑥 𝑢̄, 𝜃

𝑟
+
𝑣̄,𝑥 𝑣̄, 𝜃 + 𝑣̄,𝑥𝑤̄ + 𝑤̄,𝑥𝑤̄, 𝜃 − 𝑤̄,𝑥 𝑣̄

𝑟

)
×

(
𝛿
+
𝑢, 𝜃

𝑟
+ 𝛿+𝑣,𝑥 +

𝑢̄,𝑥𝛿
+
𝑢, 𝜃 + 𝛿

+
𝑢,𝑥 𝑢̄, 𝜃

𝑟
+
𝑣̄,𝑥𝛿

+
𝑣, 𝜃 + 𝑣̄,𝑥𝛿

+
𝑤 + 𝑤̄,𝑥𝛿

+
𝑤, 𝜃 − 𝑤̄,𝑥𝛿

+
𝑣

𝑟

+
𝛿
+
𝑣,𝑥 𝑣̄, 𝜃 + 𝛿

+
𝑣,𝑥𝑤̄ + 𝛿 +

𝑤,𝑥𝑤̄, 𝜃 − 𝛿
+
𝑤,𝑥 𝑣̄

𝑟

)
d𝑉 (5.61)
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Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

Introducing GBT’s separation of variable assumptions and modes superposition concept, given in equa-
tions (2.2) to (2.4), the domain of integration in equations (5.59) to (5.61) can be split into longitudinal
and transversal directions 𝑥 and 𝜃, respectively. This gives:

𝛿𝑈𝑥𝜃 (u)
=

∑︁
𝑖,𝑘

∫
𝐿

𝑖𝑘𝐷 𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥

}
𝐾L

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑘𝐷1
𝑗𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑖𝑘 𝑗𝐷1
𝑗𝑉̄ 𝑖

+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑘𝐷2
𝑗𝑉̄,𝑥𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑖𝑘 𝑗𝐷2
𝑗𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐷1
𝑗𝑉̄,𝑥

𝑖
+
𝑉 𝛿𝑘

+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘𝑖 𝑗𝐷1
𝑗𝑉̄ 𝑖

+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐷2
𝑗𝑉̄,𝑥𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘𝑖 𝑗𝐷2
𝑗𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥



𝐾uL

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐷1
𝑗𝑉̄,𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝑙𝐷1
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖
+
𝑉 𝛿𝑘

+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑙𝑘𝐷1
𝑗𝑉̄ 𝑙𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑘𝑙𝐷1
𝑗𝑉̄ 𝑙𝑉̄ 𝑖

+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐷2
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥𝑥
𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝑙𝐷2
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑙𝑘𝐷2
𝑗𝑉̄,𝑥

𝑙𝑉̄,𝑥𝑥
𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑘𝑙𝐷2
𝑗𝑉̄,𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑘𝑙𝑖𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑘𝑖𝑙𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄ 𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑙𝑖𝐷12
𝑗𝑉̄ 𝑙𝑉̄,𝑥

𝑖
+
𝑉 𝛿𝑘

+
𝑉 ,𝑥𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝑙𝐷12
𝑗𝑉̄ 𝑙𝑉̄ 𝑖

+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝑙𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄ 𝑖
+
𝑉 𝛿𝑘

+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑙𝑘𝐷12
𝑗𝑉̄ 𝑙𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑘𝑙𝐷12
𝑗𝑉̄ 𝑙𝑉̄ 𝑖

+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥



𝐾uN

(5.62)

with the section properties

𝑖𝑘𝐷 = 𝐺𝑡

∮ ( 𝑖𝑢, 𝜃 (𝜃)
𝑟

+ 𝑖𝑣 (𝜃)
) ( 𝑘𝑢, 𝜃 (𝜃)

𝑟
+ 𝑘𝑣 (𝜃)

)
𝑟 𝑑𝜃 (5.63)
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𝑗𝑖𝑘𝐷1 = 𝐺𝑡

∮ ( 𝑗𝑢, 𝜃 (𝜃)
𝑟

+ 𝑗𝑣 (𝜃)
)

×
( 𝑖𝑣 (𝜃)𝑘𝑣, 𝜃 (𝜃) + 𝑖𝑣 (𝜃)𝑘𝑤(𝜃) + 𝑖𝑤 (𝜃)𝑘𝑤, 𝜃 (𝜃) − 𝑖𝑤 (𝜃)𝑘𝑣(𝜃)

𝑟

)
𝑟 𝑑𝜃 (5.64)

𝑗𝑖𝑘𝐷2 = 𝐺𝑡

∮ ( 𝑗𝑢, 𝜃 (𝜃)
𝑟

+ 𝑗𝑣 (𝜃)
) 𝑖𝑢 (𝜃)𝑘𝑢, 𝜃 (𝜃)

𝑟
𝑟 𝑑𝜃 (5.65)

𝑗𝑙𝑖𝑘𝐷1 = 𝐺𝑡

∮ ( 𝑗𝑣 (𝜃)𝑙𝑣, 𝜃 (𝜃) + 𝑗𝑣 (𝜃)𝑙𝑤(𝜃) + 𝑗𝑤 (𝜃)𝑙𝑤, 𝜃 (𝜃) − 𝑗𝑤 (𝜃)𝑙𝑣(𝜃)
𝑟

)
×

( 𝑖𝑣 (𝜃)𝑘𝑣, 𝜃 (𝜃) + 𝑖𝑣 (𝜃)𝑘𝑤(𝜃) + 𝑖𝑤 (𝜃)𝑘𝑤, 𝜃 (𝜃) − 𝑖𝑤 (𝜃)𝑘𝑣(𝜃)
𝑟

)
𝑟 𝑑𝜃 (5.66)

𝑗𝑙𝑖𝑘𝐷2 = 𝐺𝑡

∮ 𝑗𝑢 (𝜃)𝑙𝑢, 𝜃 (𝜃)
𝑟

𝑖𝑢 (𝜃)𝑘𝑢, 𝜃 (𝜃)
𝑟

𝑟 𝑑𝜃 (5.67)

𝑗𝑙𝑖𝑘𝐷12 = 𝐺𝑡

∮ 𝑗𝑢 (𝜃)𝑙𝑢, 𝜃 (𝜃)
𝑟

×
( 𝑖𝑣 (𝜃)𝑘𝑣, 𝜃 (𝜃) + 𝑖𝑣 (𝜃)𝑘𝑤(𝜃) + 𝑖𝑤 (𝜃)𝑘𝑤, 𝜃 (𝜃) − 𝑖𝑤 (𝜃)𝑘𝑣(𝜃)

𝑟

)
𝑟 𝑑𝜃 (5.68)

The coefficients in equations (5.63) to (5.68) are described as:

• 𝑖𝑘𝐷 is a second-order tensor associated with the linear stiffness matrix [𝐾L] similar to equation
(2.22),

• 𝑖 𝑗𝑘𝐷1 and 𝑖 𝑗𝑘𝐵2 are third-order tensors associated with the linear initial stress [𝐾𝜎L] and displace-
ment stiffness matrix [𝐾uL],

• 𝑖 𝑗𝑘𝑙𝐷1, 𝑖 𝑗𝑘𝑙𝐷2, and 𝑖 𝑗𝑘𝑙𝐷12 are fourth-order tensors associated with the quadratic initial stress
[𝐾𝜎N] and displacement stiffness matrix [𝐾𝜎N].

The variation of the shear internal energy related with initial stress and internal force are shown in
equations (5.69) and (5.70).

𝛿𝑈𝑥𝜃 (𝜎) =
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐷1
𝑗𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑘𝑖𝐷1
𝑗𝑉̄,𝑥

𝑖
+
𝑉 𝛿𝑘

+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐷2
𝑗𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑘𝑖𝐷2
𝑗𝑉̄,𝑥

𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥


𝐾𝜎L

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐷1
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑘𝑖𝐷1
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖
+
𝑉 𝛿𝑘

+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐷2
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑘𝑖𝐷2
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑘𝑖𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖
+
𝑉 𝛿𝑘

+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑘𝑖 𝑗𝑙𝐷12
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖
+
𝑉 ,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖𝑘 𝑗𝑙𝐷12
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖
+
𝑉 ,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥



𝐾𝜎N

(5.69)
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𝛿𝑈𝑥𝜃 (int)
=

∑︁
𝑖,𝑘

∫
𝐿

𝑖𝑘𝐷 𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐷1
𝑗𝑉̄,𝑥

𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑘𝑖𝐷1
𝑗𝑉̄,𝑥

𝑖𝑉̄ 𝛿𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑘𝐷2
𝑗𝑉̄,𝑥

𝑖𝑉̄,𝑥𝑥 𝛿
𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑗𝑘𝑖𝐷2
𝑗𝑉̄,𝑥

𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐷1
𝑗𝑉̄,𝑥

𝑖𝑉̄ 𝛿𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑖𝐷2
𝑗𝑉̄,𝑥𝑥

𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐷1
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑘𝑖𝐷1
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖𝑉̄ 𝛿𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐷2
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖𝑉̄,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑘𝑖𝐷2
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖𝑉̄,𝑥 𝛿

𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑖𝑘𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖𝑉̄,𝑥 𝛿

𝑘
+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑙𝑘𝑖𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖𝑉̄ 𝛿𝑘

+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑘𝑖 𝑗𝑙𝐷12
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 ,𝑥𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖𝑘 𝑗𝑙𝐷12
𝑗𝑉̄,𝑥

𝑙𝑉̄ 𝑖𝑉̄,𝑥𝑥 𝛿
𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐷1
𝑗𝑉̄,𝑥

𝑙𝑉̄,𝑥
𝑖𝑉̄ 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑙𝑘𝐷1
𝑗𝑉̄ 𝑙𝑉̄,𝑥

𝑖𝑉̄,𝑥 𝛿
𝑘
+
𝑉 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐷2
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥𝑥
𝑖𝑉̄,𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑙𝑘𝐷2
𝑗𝑉̄,𝑥

𝑙𝑉̄,𝑥𝑥
𝑖𝑉̄,𝑥𝑥 𝛿

𝑘
+
𝑉 ,𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑘𝑙𝑖𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖𝑉̄ 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑘 𝑗𝑙𝑖𝐷12
𝑗𝑉̄ 𝑙𝑉̄,𝑥

𝑖𝑉̄ 𝛿𝑘
+
𝑉 ,𝑥𝑥 d𝑥

+
∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑗𝑖𝑙𝑘𝐷12
𝑗𝑉̄,𝑥𝑥

𝑙𝑉̄,𝑥
𝑖𝑉̄ 𝛿𝑘

+
𝑉 d𝑥 +

∑︁
𝑗 ,𝑙,𝑖,𝑘

∫
𝐿

𝑖 𝑗𝑙𝑘𝐷12
𝑗𝑉̄ 𝑙𝑉̄,𝑥

𝑖𝑉̄,𝑥𝑥 𝛿
𝑘
+
𝑉 d𝑥

(5.70)

5.4 Deformation modes coupling

The nonlinear GBT coefficient tensors 𝐶, 𝐵, and 𝐷, which stem from the longitudinal extensions,
transverse extensions, and shear strains, respectively, are important for the mapping of all possible
coupling effects of the cross-section and in building the tangent stiffness matrix. The value of these
coefficients can be computed from their respective equations by substituting the deformation mode
functions described in Section 2.2.5 and computing the integrations analytically or numerically.

5.4.1 Third-order coupling tensor

The third-order coupling tensors 𝑗𝑖𝑘𝐶, 𝑗𝑖𝑘𝐵 and 𝑗𝑖𝑘𝐷 define the relationship between the initial stress
or displacement in mode 𝑗 with the incremental displacements in mode 𝑖 and forces in mode 𝑘 . The 𝐶
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and 𝐵 third-order coupling tensors are symmetric in such a way that 𝑗𝑖𝑘𝐶1 = 𝑗𝑘𝑖𝐶1 and 𝑗𝑖𝑘𝐵1 = 𝑗𝑘𝑖𝐵1.
Figures 5.3 to 5.5 show the nonlinear mode couplings between 𝑡, 𝑎, and the first five conventional and
non-conventional GBT deformation modes as a sample in a table (matrix). These tables are the projections
of the third-order tensors by reducing the dimension in 𝑗 as shown in Figure 5.5b. In Figures 5.4 and
5.5, the row and column of the deformation mode indices with no coupling are removed from the table.
The empty cells in the tables make evident that the coupling between modes 𝑗 , 𝑖, and 𝑘 is zero whereas
cells with values show the list of all possible combinations of the deformation mode indices 𝑗 , 𝑖, and 𝑘 in
separate rows within a cell.

𝑖 \ 𝑘 𝑡 𝑎 1 2
V
2

U
2 3

V
3

U
3 4

V
4

U
4 5

V
5

U
5

𝑡 𝑎 𝑡 𝑡
V
3 𝑡

V
2

V
2 𝑡

V
3

V
5 𝑡 4

V
5 𝑡

V
4

V
4 𝑡 5

V
4 𝑡

V
5

𝑎 𝑎𝑎𝑎
V
2𝑎

V
2

V
3𝑎

V
3

V
4𝑎

V
4

V
5𝑎

V
5

1

2

V
2 𝑎

V
2

V
2

V
3

V
24

V
7

V
24

V
3

V
2

V
4

V
7

V
2

V
4

V
2

V
25

V
6

V
25

V
2

V
2

V
5

V
6

V
2

V
5

U
2

3

V
3 𝑎

V
3

V
3

V
2

V
34

V
6

V
34

V
2

V
3

V
4

V
6

V
3

V
4

V
3

V
35

V
7

V
35

V
3

V
3

V
5

V
7

V
3

V
5

U
3

4
𝑎44
V
944

𝑎4
V
4

V
94

V
4

V
845

V
84

V
5

V
4

𝑎
V
4

V
4

V
9

V
4

V
4

V
8

V
45

V
8

V
4

V
5

U
4

5
𝑎55
V
955

𝑎5
V
5

V
95

V
5

V
5

𝑎
V
5

V
5

V
9

V
5

V
5

U
5 sym.

Figure 5.3: Third-order coupling tensor 𝑗𝑖𝑘𝐵1.
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Figure 5.4: Third-order coupling tensor 𝑗𝑖𝑘𝐶1.
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Figure 5.5: The projected view of the third-order coupling tensor 𝑗𝑖𝑘𝐷1.
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5.4.2 Fourth-order coupling tensor

The fourth-order coupling tensors 𝑗𝑙𝑖𝑘𝐶, 𝑗𝑙𝑖𝑘𝐵 and 𝑗𝑙𝑖𝑘𝐷 define the relationship between the initial stress
or displacement in modes 𝑗 and 𝑙 with the incremental displacements in mode 𝑖 and forces in mode 𝑘 . The
𝐶 and 𝐵 fourth-order coupling tensors are symmetric in such a way that 𝑗𝑙𝑖𝑘𝐶1 = 𝑗𝑙𝑘𝑖𝐶1 = 𝑙 𝑗𝑖𝑘𝐶1 = 𝑙 𝑗𝑘𝑖𝐶1

and 𝑗𝑙𝑖𝑘𝐵1 = 𝑗𝑙𝑘𝑖𝐵1 = 𝑙 𝑗𝑖𝑘𝐵1 = 𝑙 𝑗𝑘𝑖𝐵1. Figures 5.3 to 5.5 show the nonlinear mode couplings between 𝑡,
𝑎 and the first five conventional and non-conventional GBT deformation modes as a sample in a table.

𝑖 \ 𝑘 𝑡 𝑎
V
2

V
3 4

V
4 5

V
5

𝑡

𝑡 𝑡 𝑡 𝑡

𝑎𝑎 𝑡 𝑡

.

.

.

𝑡
V
2 𝑡

V
2

𝑎
V
3 𝑡

V
2

.

.

.

𝑡
V
3 𝑡

V
3

𝑎
V
2 𝑡

V
3

.

.

.

𝑡 4 𝑡 4

𝑡
V
4 𝑡 4
.
.
.

𝑡 4 𝑡
V
4

𝑡
V
4 𝑡

V
4

.

.

.

𝑡 5 𝑡 5

𝑡
V
5 𝑡 5
.
.
.

𝑡 5 𝑡
V
5

𝑡
V
5 𝑡

V
5

.

.

.

𝑎

𝑡 𝑡 𝑎𝑎

44𝑎𝑎
.
.
.

𝑡
V
3𝑎

V
2

V
3 𝑡 𝑎

V
2

.

.

.

𝑡
V
2𝑎

V
3

V
2 𝑡 𝑎

V
3

.

.

.

𝑡 5𝑎
V
4

𝑡
V
5𝑎

V
4

.

.

.

𝑡 4𝑎
V
5

𝑡
V
4𝑎

V
5

.

.

.

V
2

𝑡 𝑡
V
2

V
2

44
V
2

V
2

.

.

.

𝑡
V
2

V
24

𝑡 6
V
24

.

.

.

𝑡
V
2

V
2

V
4

𝑡 6
V
2

V
4

.

.

.

𝑡
V
3

V
25

𝑡 7
V
25

.

.

.

𝑡
V
3

V
2

V
5

𝑡 7
V
2

V
5

.

.

.

V
3

𝑡 𝑡
V
3

V
3

44
V
3

V
3

.

.

.

𝑡
V
3

V
34

𝑡 7
V
34

.

.

.

𝑡
V
3

V
3

V
4

𝑡 7
V
3

V
4

.

.

.

𝑡
V
2

V
35

𝑡 6
V
35

.

.

.

𝑡
V
2

V
3

V
5

𝑡 6
V
3

V
5

.

.

.

4

𝑡 𝑡 44

𝑎𝑎44
.
.
.

𝑡 𝑡 4
V
4

V
264

V
4

.

.

.

V
2745
V
2

V
745
.
.
.

V
274

V
5

V
2

V
74

V
5

.

.

.

V
4

𝑡 𝑡
V
4

V
4

𝑎𝑎
V
4

V
4

.

.

.

V
27

V
45

V
2

V
7

V
45

.

.

.

V
27

V
4

V
5

V
2

V
7

V
4

V
5

.

.

.

5

𝑡 𝑡 55

𝑎𝑎55
.
.
.

𝑡 𝑡 5
V
5

V
265

V
5

.

.

.

V
5 sym.

𝑡 𝑡
V
5

V
5

𝑎𝑎
V
5

V
5

.

.

.

Figure 5.6: Fourth-order coupling tensor 𝑗𝑙𝑖𝑘𝐵1.
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Figure 5.7: Fourth-order coupling tensor 𝑗𝑙𝑖𝑘𝐶1.
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Figure 5.8: Fourth-order coupling tensor 𝑗𝑙𝑖𝑘𝐷1.
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5.5: Finite element formulation

In these tables, the projection of the fourth-order tensors is shown by reducing the dimension in 𝑗 and
𝑙. In Figures 5.7 to 5.8, the row and column of deformation mode indices with no coupling are removed
from the tables. The empty cells in the tables make evident that the coupling between modes 𝑗 , 𝑙, 𝑖, and
𝑘 is zero. The cells with values only show two of the possible combinations of deformation mode indices
𝑗 , 𝑙, 𝑖, and 𝑘 due to a large number of possibilities. The determination of the fourth-order tensors is
computationally costly if large numbers of deformation modes are considered in the analysis. Here, the
symmetric properties of these tensors can be used to reduce the computation effort.

5.5 Finite element formulation

Following the same procedure used to formulate the GBT linear element stiffness matrix in Section 2.2.6,
the nonlinear GBT tangent element stiffness matrices and the element internal force vectors are derived
by substituting equations (2.39) and (2.40) into the variation of the internal energy in equations (5.36),
(5.48), (5.49), (5.50), (5.62), (5.69) and (5.70). As shown in equation (5.71), the formulation of the
sub-matrix components 𝑖𝑘 [𝑘T] of the tangent element stiffness matrices can be classified as the linear
stiffness sub-matrix 𝑖𝑘 [𝑘] which is independent of the displacements and is the same as equation (2.51)
in Chapter 2, the initial linear displacement sub-matrix 𝑗𝑖𝑘 [𝑘uL] which is linearly dependent on the initial
displacements, the initial quadratic displacement sub-matrix 𝑗𝑙𝑖𝑘 [𝑘uN] which is quadratically dependent
on the initial displacements, the initial linear stress stiffness sub-matrix 𝑗𝑖𝑘 [𝑘𝜎L] and the initial quadratic
stress stiffness sub-matrix 𝑗𝑙𝑖𝑘 [𝑘𝜎N].

𝑖𝑘 [𝑘T] = 𝑖𝑘 [𝑘] + 𝑗𝑖𝑘 [𝑘uL] + 𝑗𝑙𝑖𝑘 [𝑘uN] + 𝑗𝑖𝑘 [𝑘𝜎L] + 𝑗𝑙𝑖𝑘 [𝑘𝜎N] (5.71)

Following, the derivation of each of the nonlinear terms in equation (5.71) is shown.

a) The initial linear displacement sub-matrix 𝑗𝑖𝑘 [𝑘uL] can be extracted from the variation of the
internal energy in equations (5.36), (5.48), and (5.62) by taking the summations related with 𝐾uL

and substituting equations (2.39) and (2.40).

𝑗𝑖𝑘 [𝑘uL] =
(
𝑖 𝑗𝑘𝐶1 + 𝑘𝑖 𝑗𝐷2

)
𝑗𝑖𝑘 [V9] +

(
𝑘 𝑗𝑖𝐶1 + 𝑖𝑘 𝑗𝐷2

)
𝑗𝑖𝑘 [V10] +

(
𝑖 𝑗𝑘𝐶2 + 𝑘 𝑗𝑖𝐶2

)
𝑗𝑖𝑘 [V11]

+
(
𝑖 𝑗𝑘𝐵1 + 𝑘 𝑗𝑖𝐵1

)
𝑗𝑖𝑘 [V12] +

(
𝑖 𝑗𝑘𝐵2 + 𝑘 𝑗𝑖𝐷1

)
𝑗𝑖𝑘 [V13] +

(
𝑘 𝑗𝑖𝐵2 + 𝑖 𝑗𝑘𝐷1

)
𝑗𝑖𝑘 [V14]

+
(
𝑖𝑘 𝑗𝐷1 + 𝑘𝑖 𝑗𝐷1

)
𝑗𝑖𝑘 [V15] +

(
𝑖 𝑗𝑘𝐷2 + 𝑘 𝑗𝑖𝐷2

)
𝑗𝑖𝑘 [V16] (5.72)

b) The initial quadratic displacement sub-matrix 𝑗𝑙𝑖𝑘 [𝑘uN] can be extracted from the variation of the
internal energy in equations (5.36), (5.48), and (5.62) by taking the summations related with 𝐾uN
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Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

and substituting equations (2.39) and (2.40).

𝑗𝑙𝑖𝑘 [𝑘uN] =
(
𝑗𝑖𝑙𝑘𝐶1 + 𝑗𝑖𝑙𝑘𝐵2

)
𝑗𝑙𝑖𝑘 [V17] + 𝑗𝑖𝑙𝑘𝐶2

𝑗𝑙𝑖𝑘 [V18] + 𝑖𝑘 𝑗𝑙𝐶12
𝑗𝑙𝑖𝑘 [V19]

+ 𝑗𝑖𝑙𝑘𝐶12
𝑗𝑙𝑖𝑘 [V20] + 𝑗𝑖𝑙𝑘𝐵1

𝑗𝑙𝑖𝑘 [V21] + 𝑙𝑘 𝑗𝑖𝐵12
𝑗𝑙𝑖𝑘 [V22] + 𝑗𝑖𝑙𝑘𝐵12

𝑗𝑙𝑖𝑘 [V23]

+ 𝑗𝑖𝑙𝑘𝐷1
𝑗𝑙𝑖𝑘 [V24] + 𝑗𝑖𝑘𝑙𝐷1

𝑗𝑙𝑖𝑘 [V25] + 𝑖 𝑗𝑙𝑘𝐷1
𝑗𝑙𝑖𝑘 [V26] + 𝑖 𝑗𝑘𝑙𝐷1

𝑗𝑙𝑖𝑘 [V27]

+ 𝑗𝑖𝑙𝑘𝐷2
𝑗𝑙𝑖𝑘 [V28] + 𝑗𝑖𝑘𝑙𝐷2

𝑗𝑙𝑖𝑘 [V29] + 𝑖 𝑗𝑙𝑘𝐷2
𝑗𝑙𝑖𝑘 [V30] + 𝑖 𝑗𝑘𝑙𝐷2

𝑗𝑙𝑖𝑘 [V31]

+
(
𝑗𝑘𝑙𝑖𝐷12 + 𝑗𝑖𝑙𝑘𝐷12

)
𝑗𝑙𝑖𝑘 [V32] + 𝑗𝑘𝑖𝑙𝐷12

𝑗𝑙𝑖𝑘 [V33] + 𝑘 𝑗𝑙𝑖𝐷12
𝑗𝑙𝑖𝑘 [V34]

+ 𝑘 𝑗𝑖𝑙𝐷12
𝑗𝑙𝑖𝑘 [V35] + 𝑗𝑖𝑘𝑙𝐷12

𝑗𝑙𝑖𝑘 [V36] + 𝑖 𝑗𝑙𝑘𝐷12
𝑗𝑙𝑖𝑘 [V37] + 𝑖 𝑗𝑘𝑙𝐷12

𝑗𝑙𝑖𝑘 [V38] (5.73)

c) The initial linear stress sub-matrix 𝑗𝑖𝑘 [𝑘𝜎L] can be extracted from the variation of the internal
energy in equations (5.36), (5.49) and (5.69) by taking the summations related with 𝐾𝜎L and
substituting equations (2.39) and (2.40).

𝑗𝑖𝑘 [𝑘𝜎L] = 𝑗𝑖𝑘𝐶1
𝑗𝑖𝑘 [V16] + 𝑗𝑖𝑘𝐶2

𝑗𝑖𝑘 [V11] + 𝑗𝑖𝑘𝐵1
𝑗𝑖𝑘 [V12] + 𝑗𝑖𝑘𝐵2

𝑗𝑖𝑘 [V15]

+ 𝑗𝑖𝑘𝐷1
𝑗𝑖𝑘 [V14] + 𝑗𝑘𝑖𝐷1

𝑗𝑖𝑘 [V13] + 𝑗𝑖𝑘𝐷2
𝑗𝑖𝑘 [V9] + 𝑗𝑘𝑖𝐷2

𝑗𝑖𝑘 [V10] (5.74)

d) The initial quadratic stress sub-matrix 𝑗𝑙𝑖𝑘 [𝑘𝜎N] can be extracted from the variation of the internal
energy in equations (5.36), (5.49) and (5.69) by taking the summations related with 𝐾𝜎N and
substituting equations (2.39) and (2.40).

𝑗𝑙𝑖𝑘 [𝑘𝜎N] =
(
𝑗𝑙𝑖𝑘𝐶1

2
+

𝑗𝑙𝑖𝑘𝐵2
2

)
𝑗𝑙𝑖𝑘 [V17] +

𝑗𝑙𝑖𝑘𝐶2
2

𝑗𝑙𝑖𝑘 [V18] +
𝑗𝑙𝑖𝑘𝐶12

2
𝑗𝑙𝑖𝑘 [V28]

+
𝑖𝑘 𝑗𝑙𝐶12

2
𝑗𝑙𝑖𝑘 [V31] +

𝑗𝑙𝑖𝑘𝐵1
2

𝑗𝑙𝑖𝑘 [V21] +
𝑗𝑙𝑖𝑘𝐵12

2
𝑗𝑙𝑖𝑘 [V24] +

𝑖𝑘 𝑗𝑙𝐵12
2

𝑗𝑙𝑖𝑘 [V27]

+ 𝑗𝑙𝑖𝑘𝐷1
𝑗𝑙𝑖𝑘 [V23] + 𝑗𝑙𝑘𝑖𝐷1

𝑗𝑙𝑖𝑘 [V25] + 𝑗𝑙𝑖𝑘𝐷2
𝑗𝑙𝑖𝑘 [V20] + 𝑗𝑙𝑘𝑖𝐷2

𝑗𝑙𝑖𝑘 [V29]

+ 𝑗𝑙𝑖𝑘𝐷12
𝑗𝑙𝑖𝑘 [V39] + 𝑗𝑙𝑘𝑖𝐷12

𝑗𝑙𝑖𝑘 [V40] + 𝑘𝑖 𝑗𝑙𝐷12
𝑗𝑙𝑖𝑘 [V41] + 𝑖𝑘 𝑗𝑙𝐷12

𝑗𝑙𝑖𝑘 [V42] (5.75)

In equations (5.72) and (5.74), the terms 𝑗𝑖𝑘 [V...] represent the corresponding longitudinal integrations
in the variation of the internal energy equations. For illustration purposes, the derivation of 𝑗𝑖𝑘 [V9] is
shown, assuming that 𝑗 , 𝑖, and 𝑘 are not equal to 1 and can be approximated using the Hermite cubic
polynomials.

𝑗𝑖𝑘 [V9] =
∫
𝐿

𝑗𝑉̄,𝑥 (𝑥) 𝑖
+
𝑉 ,𝑥𝑥 (𝑥) 𝛿𝑘

+
𝑉 ,𝑥 (𝑥) d𝑥

=

∫ +𝐿
2

−𝐿
2

𝑗{𝑇𝑥},𝑥 𝑗 [𝑆ℎ] 𝑗{𝜗̄} 𝑘 [𝑆ℎ]𝑇 𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥𝑥 𝑖 [𝑆ℎ] d𝑥 (5.76)
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5.5: Finite element formulation

Here, the completeness coefficient matrix 𝑗 [𝑆ℎH] can be expressed using row vectors 𝑗{𝑆ℎr}.

𝑗 [𝑆ℎH] =



2
𝐿3

1
𝐿2 − 2

𝐿3
1
𝐿2

0 − 1
2𝐿

0
1

2𝐿

− 3
2𝐿

−1
4

3
2𝐿

−1
4

1
2

𝐿

8
1
2

−𝐿
8


=



{𝑆ℎr1}

{𝑆ℎr2}

{𝑆ℎr3}

{𝑆ℎr4}


(5.77)

Substituting equation (5.77) into equation (5.76), the term 𝑗𝑖𝑘 [V9] can be written as:

𝑗𝑖𝑘 [V9] = 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

3𝑥2 𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥𝑥 d𝑥 𝑖 [𝑆ℎ]

+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄} 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

2𝑥 𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥𝑥 d𝑥 𝑖 [𝑆ℎ]

+ 𝑗{𝑆ℎr3} 𝑗{𝜗̄} 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥𝑥 d𝑥 𝑖 [𝑆ℎ] (5.78)

Computing the integrals in equation (5.78), 𝑗𝑖𝑘 [V9] can be expressed as the following matrix:

𝑗𝑖𝑘 [V9] = 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝐿

40



0 6 0 −6

−18 −11 𝐿 18 −7 𝐿

0 −6 0 6

18 𝐿 7 𝐿 −18 11 𝐿



+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄} 1
30𝐿



−36 −18 𝐿 36 −18 𝐿

12 𝐿 11 𝐿2 −12 𝐿 𝐿2

36 18 𝐿 −36 18 𝐿

12 𝐿 𝐿2 −12 𝐿 11 𝐿2



+ 𝑗{𝑆ℎr3} 𝑗{𝜗̄} 1
2𝐿



0 2 0 −2

−2 −𝐿 2 −𝐿

0 −2 0 2

2 𝐿 −2 𝐿


(5.79)

116



Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

Similarly, in equations (5.73) and (5.75) the terms 𝑗𝑙𝑖𝑘 [V...] represent the corresponding longitudinal
integrations in the variation of the internal energy equations. For illustration purposes, the derivation
of 𝑗𝑙𝑖𝑘 [V17] is shown assuming that 𝑗 , 𝑙, 𝑖, and 𝑘 are not equal to 1 and can be approximated using the
Hermite cubic polynomials.

𝑗𝑙𝑖𝑘 [V17] =
∫
𝐿

𝑗𝑉̄,𝑥 (𝑥)𝑙𝑉̄,𝑥 (𝑥) 𝑖
+
𝑉 ,𝑥 (𝑥) 𝛿𝑘

+
𝑉 ,𝑥 (𝑥) d𝑥

=

∫ +𝐿
2

−𝐿
2

𝑗{𝑇𝑥},𝑥 𝑗 [𝑆ℎ] 𝑗{𝜗̄} 𝑙{𝑇𝑥},𝑥 𝑙 [𝑆ℎ] 𝑙{𝜗̄} 𝑘 [𝑆ℎ]𝑇 𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥 𝑖 [𝑆ℎ] d𝑥

= 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr1} 𝑙{𝜗̄}𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

9𝑥4 𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥 d𝑥 𝑖 [𝑆ℎ]

+ 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr2} 𝑙{𝜗̄}𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

12𝑥3 𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥 d𝑥 𝑖 [𝑆ℎ]

+ 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr3} 𝑙{𝜗̄}𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

6𝑥2 𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥 d𝑥 𝑖 [𝑆ℎ]

+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄} 𝑙{𝑆ℎr2} 𝑙{𝜗̄}𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

4𝑥2 𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥 d𝑥 𝑖 [𝑆ℎ]

+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄} 𝑙{𝑆ℎr3} 𝑙{𝜗̄}𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

4𝑥 𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥 d𝑥 𝑖 [𝑆ℎ]

+ 𝑗{𝑆ℎr3} 𝑗{𝜗̄} 𝑙{𝑆ℎr3} 𝑙{𝜗̄}𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

𝑘 {𝑇𝑥}𝑇,𝑥 𝑖{𝑇𝑥},𝑥 d𝑥 𝑖 [𝑆ℎ] (5.80)
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5.5: Finite element formulation

Computing the integrals in equation (5.80), 𝑗𝑙𝑖𝑘 [V17] is expressed as matrix in equation (5.81).

𝑗𝑙𝑖𝑘 [V17] = 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr1} 𝑙{𝜗̄} 𝐿3

1120



36 −9 𝐿 −36 −9 𝐿

36 𝐿2 9 𝐿 −9 𝐿2

36 9 𝐿

sym. 36 𝐿2


+ 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr2} 𝑙{𝜗̄} 3𝐿3

140



0 3 0 −3

−4 𝐿 −3 0

0 3

sym. 4 𝐿


+ 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr3} 𝑙{𝜗̄} 𝐿

140



36 −3 𝐿 −36 −3 𝐿

16 𝐿2 3 𝐿 −5 𝐿2

36 3 𝐿

sym. 16 𝐿2


+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄} 𝑙{𝑆ℎr2} 𝑙{𝜗̄} 𝐿

210



36 −3 𝐿 −36 −3 𝐿

16 𝐿2 3 𝐿 −5 𝐿2

36 3 𝐿

sym. 16 𝐿2


+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄} 𝑙{𝑆ℎr3} 𝑙{𝜗̄} 𝐿

15



0 3 0 −3

−2 𝐿 −3 0

0 3

sym. 2 𝐿


+ 𝑗{𝑆ℎr3} 𝑗{𝜗̄} 𝑙{𝑆ℎr3} 𝑙{𝜗̄} 1

30𝐿



36 3 𝐿 −36 3 𝐿

4 𝐿2 −3 𝐿 −𝐿2

36 −3 𝐿

sym. 4 𝐿2


(5.81)
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Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

Once all the sub-matrices are computed the tangent element stiffness matrix can be assembled as shown
in equation (5.82). Here, if the initial conditions are assumed to be zero at the beginning of the nonlinear
analysis, then the tangent element stiffness matrix will be reduced to the elastic stiffness matrix.

[𝐾T]𝑒 =



𝑡 𝑡 [𝑘] [0] [0] [0] [0] [0] [0] . . .

𝑎𝑎 [𝑘] [0] [0] [0] [0] [0] . . .

11 [𝑘] [0] [0] [0] [0] . . .

22 [𝑘] 2
V
2 [𝑘] 2

U
2 [𝑘] [0] . . .

V
2

V
2 [𝑘]

V
2

U
2 [𝑘] [0] . . .

U
2

U
2 [𝑘] [0] . . .

33 [𝑘] . . .

sym. . . .



+
∑︁
𝑗



𝑗 𝑡 𝑡 [𝑘] 𝑗 𝑡 𝑎 [𝑘] 𝑗 𝑡 1 [𝑘] 𝑗 𝑡 2 [𝑘] 𝑗 𝑡
V
2 [𝑘] 𝑗 𝑡

U
2 [𝑘] 𝑗 𝑡 3 [𝑘] . . .

𝑗𝑎𝑎 [𝑘] 𝑗𝑎1 [𝑘] 𝑗𝑎2 [𝑘] 𝑗𝑎
V
2 [𝑘] 𝑗𝑎

U
2 [𝑘] 𝑗𝑎3 [𝑘] . . .

𝑗11 [𝑘] 𝑗12 [𝑘] 𝑗1
V
2 [𝑘] 𝑗1

U
2 [𝑘] 𝑗13 [𝑘] . . .

𝑗22 [𝑘] 𝑗2
V
2 [𝑘] 𝑗2

U
2 [𝑘] 𝑗23 [𝑘] . . .

𝑗
V
2

V
2 [𝑘] 𝑗

V
2

U
2 [𝑘] 𝑗

V
23 [𝑘] . . .

𝑗
U
2

U
2 [𝑘] 𝑗

U
23 [𝑘] . . .

𝑗33 [𝑘] . . .

𝑠𝑦𝑚.
. . .



+
∑︁
𝑗 ,𝑙



𝑗 𝑙 𝑡 𝑡 [𝑘] 𝑗 𝑙 𝑡 𝑎 [𝑘] 𝑗 𝑙 𝑡 1 [𝑘] 𝑗 𝑙 𝑡 2 [𝑘] 𝑗 𝑙 𝑡
V
2 [𝑘] 𝑗 𝑙 𝑡

U
2 [𝑘] 𝑗 𝑙 𝑡 3 [𝑘] . . .

𝑗 𝑙𝑎𝑎 [𝑘] 𝑗 𝑙𝑎1 [𝑘] 𝑗 𝑙𝑎2 [𝑘] 𝑗 𝑙𝑎
V
2 [𝑘] 𝑗 𝑙𝑎

U
2 [𝑘] 𝑗 𝑙𝑎3 [𝑘] . . .

𝑗 𝑙11 [𝑘] 𝑗 𝑙12 [𝑘] 𝑗 𝑙1
V
2 [𝑘] 𝑗 𝑙1

U
2 [𝑘] 𝑗 𝑙13 [𝑘] . . .

𝑗 𝑙22 [𝑘] 𝑗 𝑙2
V
2 [𝑘] 𝑗 𝑙2

U
2 [𝑘] 𝑗 𝑙23 [𝑘] . . .

𝑗 𝑙
V
2

V
2 [𝑘] 𝑗 𝑙

V
2

U
2 [𝑘] 𝑗 𝑙

V
23 [𝑘] . . .

𝑗 𝑙
U
2

U
2 [𝑘] 𝑗 𝑙

U
23 [𝑘] . . .

𝑗 𝑙33 [𝑘] . . .

𝑠𝑦𝑚.
. . .



(5.82)

The initial linear and quadratic tangent element stiffness matrices, which are the second and third terms
in equation (5.82), respectively, are activated after the first step due to the change in displacements. The
correct values of these matrices in each load increment step are determined using the Newton-Raphson
iterative solver.
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5.5: Finite element formulation

The other important parameter in a nonlinear analysis is the formulation of the element internal force
vectors. As explained in equation (5.3), the relationship between the tangent stiffness matrix KT , internal
force Fint and displacement V can be defined as:

KT =
𝜕Fint
𝜕V

(5.83)

This relationship is important for checking the consistency of the formulation. Here, the element internal
force vector is derived or extracted from the variation of the internal energy equations (5.36), (5.50), and
(5.70). As shown in equation (5.84), the formulation of sub-vector components 𝑘 { 𝑓int} of the element
internal force vector can be classified as the linear internal force sub-vector 𝑖𝑘{ 𝑓 } which is linearly
dependent on the displacements, the initial linear internal force sub-vector 𝑗𝑖𝑘 { 𝑓L} which is quadratically
dependent on the initial displacements and the initial quadratic internal force sub-vector 𝑗𝑙𝑖𝑘 { 𝑓N} which
is cubically dependent on the initial displacements.

𝑘 { 𝑓int} = 𝑖𝑘 { 𝑓 } + 𝑗𝑖𝑘 { 𝑓L} + 𝑗𝑙𝑖𝑘 { 𝑓N} (5.84)

Following, the derivation of each of these terms in equation (5.84) is shown.

a) The sub-vector 𝑖𝑘 { 𝑓 } can be extracted from the variation of the internal energy in equations (5.36),
(5.50) and (5.70) by taking the summations related with the second-order coupling tensors in the
𝐹int and substituting equations (2.39) and (2.40).

𝑖𝑘 { 𝑓 } = 𝑖𝑘𝐶 𝑖𝑘 {V1} + 𝑖𝑘𝐵 𝑖𝑘 {V2} + 𝑖𝑘𝐷 𝑖𝑘 {V3} (5.85)

b) The sub-vector 𝑗𝑖𝑘 { 𝑓L} can be extracted from the variation of the internal energy in equations
(5.36), (5.50) and (5.70) by taking the summations related with the third-order coupling tensors in
the 𝐹int and substituting equations (2.39) and (2.40).

𝑗𝑖𝑘 { 𝑓L} =
(
𝑖 𝑗𝑘𝐶1 + 𝑘 𝑗𝑖𝐷2

)
𝑗𝑖𝑘{V4} +

(
𝑗𝑖𝑘𝐶2 +

𝑘 𝑗𝑖𝐶2
2

)
𝑗𝑖𝑘 {V5} +

(
𝑘 𝑗𝑖𝐶1

2
+ 𝑗𝑘𝑖𝐷2

)
𝑗𝑖𝑘 {V6}

+
(
𝑗𝑖𝑘𝐵1 +

𝑘 𝑗𝑖𝐵1
2

)
𝑗𝑖𝑘 {V7} + 𝑗𝑖𝑘𝐵2

𝑗𝑖𝑘 {V8} +
(
𝑘 𝑗𝑖𝐵2

2
+ 𝑗𝑖𝑘𝐷1

)
𝑗𝑖𝑘 {V9}

+
(
𝑗𝑘𝑖𝐷1 + 𝑘 𝑗𝑖𝐷1

)
𝑗𝑖𝑘 {V10} + 𝑗𝑖𝑘𝐷2

𝑗𝑖𝑘 {V11} (5.86)

c) The sub-vector 𝑗𝑙𝑖𝑘{ 𝑓N} can be extracted from the variation of the internal energy in equations
(5.36), (5.50) and (5.70) by taking the summations related with the fourth-order coupling tensors
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Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

in the 𝐹int and substituting equations (2.39) and (2.40).

𝑗𝑙𝑖𝑘 { 𝑓N} =
(
𝑗𝑙𝑖𝑘𝐶1

2
+

𝑗𝑙𝑖𝑘𝐵2
2

)
𝑗𝑙𝑖𝑘 {V12} +

𝑗𝑙𝑖𝑘𝐶2
2

𝑗𝑙𝑖𝑘 {V13} +
𝑖𝑘 𝑗𝑙𝐶12

2
𝑗𝑙𝑖𝑘{V14}

+
(
𝑗𝑙𝑖𝑘𝐶12

2
+ 𝑗𝑖𝑙𝑘𝐷2

)
𝑗𝑙𝑖𝑘{V15} +

𝑗𝑙𝑖𝑘𝐵1
2

𝑗𝑙𝑖𝑘{V16} +
𝑖𝑘 𝑗𝑙𝐵12

2
𝑗𝑙𝑖𝑘{V17}

+
(
𝑗𝑙𝑖𝑘𝐵12

2
+ 𝑗𝑖𝑙𝑘𝐷1

)
𝑗𝑙𝑖𝑘 {V18} + 𝑗𝑙𝑖𝑘𝐷1

𝑗𝑙𝑖𝑘 {V19} + 𝑗𝑙𝑘𝑖𝐷1
𝑗𝑙𝑖𝑘 {V20}

+ 𝑗𝑙𝑖𝑘𝐷2
𝑗𝑙𝑖𝑘 {V21} + 𝑗𝑙𝑘𝑖𝐷2

𝑗𝑙𝑖𝑘 {V22} + 𝑖 𝑗𝑙𝑘𝐷1
𝑗𝑙𝑖𝑘{V27} + 𝑖 𝑗𝑙𝑘𝐷2

𝑗𝑙𝑖𝑘 {V28}

+
(
𝑗𝑘𝑙𝑖𝐷12 + 𝑗𝑖𝑙𝑘𝐷12

)
𝑗𝑙𝑖𝑘{V29} + 𝑗𝑙𝑖𝑘𝐷12

𝑗𝑙𝑖𝑘{V23} + 𝑗𝑙𝑘𝑖𝐷12
𝑗𝑙𝑖𝑘{V24}

+ 𝑘𝑖 𝑗𝑙𝐷12
𝑗𝑙𝑖𝑘{V25} + 𝑖𝑘 𝑗𝑙𝐷12

𝑗𝑙𝑖𝑘{V26} + 𝑘 𝑗𝑙𝑖𝐷12
𝑗𝑙𝑖𝑘{V30} + 𝑖 𝑗𝑙𝑘𝐷12

𝑗𝑙𝑖𝑘{V31} (5.87)

In equations (5.84) to (5.87) the terms (... ) {V( ·) } represent the corresponding longitudinal integration
in the variation of the internal energy equations. For illustration purposes, the derivations of 𝑖𝑘 {V1},
𝑗𝑖𝑘 {V4}, and 𝑗𝑙𝑖𝑘 {V13} are shown, assuming that 𝑗 , 𝑙, 𝑖, and 𝑘 are not equal to 1 and can be approximated
using the Hermite cubic polynomials.

𝑖𝑘 {V1} =
∫
𝐿

𝑖𝑉̄,𝑥𝑥 (𝑥) 𝛿𝑘
+
𝑉 ,𝑥𝑥 (𝑥) d𝑥

= 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

𝑘 {𝑇𝑥}𝑇,𝑥𝑥𝑖{𝑇𝑥},𝑥𝑥 d𝑥 𝑖 [𝑆ℎ]𝑖{𝜗̄}

=
1
𝐿3



12 6 𝐿 −12 6 𝐿

4 𝐿2 −6 𝐿 2 𝐿2

12 −6 𝐿

sym. 4 𝐿2


𝑖{𝜗̄} (5.88)

Substituting the equations (2.39), (2.40), and (5.77), the term 𝑗𝑖𝑘{V4} can be derived as:

𝑗𝑖𝑘 {V4} =
∫
𝐿

𝑗𝑉̄,𝑥𝑥 (𝑥) 𝑖𝑉̄,𝑥 (𝑥) 𝛿𝑘
+
𝑉 ,𝑥 (𝑥) d𝑥

=

∫ +𝐿
2

−𝐿
2

𝑗{𝑇𝑥},𝑥𝑥 𝑗 [𝑆ℎ] 𝑗{𝜗̄}𝑘 [𝑆ℎ]𝑇 𝑘 {𝑇𝑥}𝑇,𝑥𝑖{𝑇𝑥},𝑥 𝑖 [𝑆ℎ]𝑖{𝜗̄} d𝑥

= 𝑗{𝑆ℎr1} 𝑗{𝜗̄}𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

6𝑥 𝑘 {𝑇𝑥}𝑇,𝑥𝑖{𝑇𝑥},𝑥 d𝑥 𝑖 [𝑆ℎ] 𝑖{𝜗̄}

+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄}𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

2 𝑘 {𝑇𝑥}𝑇,𝑥𝑖{𝑇𝑥},𝑥 d𝑥 𝑖 [𝑆ℎ] 𝑖{𝜗̄} (5.89)
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5.5: Finite element formulation

Computing the integrals in equation (5.89), 𝑗𝑖𝑘{V4} is expressed as a vector in equation (5.90).

𝑗𝑖𝑘 {V4} = 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 1
10



0 3 𝐿 0 −3 𝐿

−2 𝐿2 −3 𝐿 0

0 3 𝐿

sym. 2 𝐿2


𝑖{𝜗̄}

+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄} 1
15𝐿



36 3 𝐿 −36 3 𝐿

4 𝐿2 −3 𝐿 −𝐿2

36 −3 𝐿

sym. 4 𝐿2


𝑖{𝜗̄} (5.90)

Substituting the equations (2.39), (2.40), and (5.77) the term 𝑗𝑙𝑖𝑘{V13} can be derived as:

𝑗𝑙𝑖𝑘{V13} =
∫
𝐿

𝑗𝑉̄,𝑥𝑥 (𝑥) 𝑙𝑉̄,𝑥𝑥 (𝑥) 𝑖𝑉̄,𝑥𝑥 (𝑥) 𝛿𝑘
+
𝑉 ,𝑥𝑥 (𝑥) d𝑥

=

∫ +𝐿
2

−𝐿
2

𝑗{𝑇𝑥},𝑥𝑥 𝑗 [𝑆ℎ] 𝑗{𝜗̄} 𝑙{𝑇𝑥},𝑥𝑥𝑙 [𝑆ℎ] 𝑙{𝜗̄} 𝑘 [𝑆ℎ]𝑇 𝑘 {𝑇𝑥}𝑇,𝑥𝑥𝑖{𝑇𝑥},𝑥𝑥𝑖 [𝑆ℎ] 𝑖{𝜗̄} d𝑥

= 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr1} 𝑙{𝜗̄} 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

36𝑥2 𝑘 {𝑇𝑥}𝑇,𝑥𝑥𝑖{𝑇𝑥},𝑥𝑥 d𝑥 𝑖 [𝑆ℎ] 𝑖{𝜗̄}

+ 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr2} 𝑙{𝜗̄} 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

24𝑥 𝑘 {𝑇𝑥}𝑇,𝑥𝑥𝑖{𝑇𝑥},𝑥𝑥 d𝑥 𝑖 [𝑆ℎ] 𝑖{𝜗̄}

+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄} 𝑙{𝑆ℎr2} 𝑙{𝜗̄} 𝑘 [𝑆ℎ]𝑇
∫ +𝐿

2

−𝐿
2

4 𝑘 {𝑇𝑥}𝑇,𝑥𝑥𝑖{𝑇𝑥},𝑥𝑥 d𝑥 𝑖 [𝑆ℎ] 𝑖{𝜗̄} (5.91)
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Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

Computing the integrals in equation (5.91), 𝑗𝑙𝑖𝑘 {V13} is expressed as a vector in equation (5.92).

𝑗𝑙𝑖𝑘 {V13} = 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr1} 𝑙{𝜗̄} 6
5𝐿



54 27 𝐿 −54 27 𝐿

16 𝐿2 −27 𝐿 11 𝐿2

54 −27 𝐿

sym. 16 𝐿2


𝑖{𝜗̄}

+ 𝑗{𝑆ℎr1} 𝑗{𝜗̄} 𝑙{𝑆ℎr2} 𝑙{𝜗̄} 24
𝐿



0 −1 0 1

−𝐿 1 0

0 −1

sym. 𝐿


𝑖{𝜗̄}

+ 𝑗{𝑆ℎr2} 𝑗{𝜗̄} 𝑙{𝑆ℎr2} 𝑙{𝜗̄} 4
𝐿3



12 6 𝐿 −12 6 𝐿

4 𝐿2 −6 𝐿 2 𝐿2

12 −6 𝐿

sym. 4 𝐿2


𝑖{𝜗̄} (5.92)

Once all the sub-vectors are computed the element internal force vector can be assembled as shown in
equation (5.93).

{𝐹int}𝑒 =
∑︁
𝑖



𝑖 𝑡 { 𝑓}
𝑖 𝑎 { 𝑓}
𝑖 1 { 𝑓}
𝑖 2 { 𝑓}
𝑖

V
2 { 𝑓}

𝑖
U
2 { 𝑓}

𝑖 3 { 𝑓}
𝑖

V
3 { 𝑓}
...



+
∑︁
𝑗 ,𝑖



𝑗 𝑖 𝑡 { 𝑓L}
𝑗 𝑖 𝑎 { 𝑓L}
𝑗 𝑖 1 { 𝑓L}
𝑗 𝑖 2 { 𝑓L}
𝑗 𝑖

V
2 { 𝑓L}

𝑗 𝑖
U
2 { 𝑓L}

𝑗 𝑖 3 { 𝑓L}
𝑗 𝑖

V
3 { 𝑓L}
...



+
∑︁
𝑗 ,𝑙,𝑖



𝑗 𝑙 𝑖 𝑡 { 𝑓N}
𝑗 𝑙 𝑖 𝑎 { 𝑓N}
𝑗 𝑙 𝑖 1 { 𝑓N}
𝑗 𝑙 𝑖 2 { 𝑓N}
𝑗 𝑙 𝑖

V
2 { 𝑓N}

𝑗 𝑙 𝑖
U
2 { 𝑓N}

𝑗 𝑙 𝑖 3 { 𝑓N}
𝑗 𝑙 𝑖

V
3 { 𝑓N}
...



(5.93)

During the Python code implementation, the consistency of the derived tangent stiffness matrix in equation
(5.82) and the internal force vector in equation (5.93) is checked based on the relationship defined in
equation (5.83). In nonlinear analysis, the internal force vector is a parameter more crucial than the
tangent stiffness matrix, since without the accurate calculation of the internal force the analysis cannot
converge to the correct solution. In fact, in the explicit finite element method only the internal force
vector is required for analysis.
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5.6: Nonlinear stress resultants

5.6 Nonlinear stress resultants

In this section, the nonlinear stress resultants for the membrane forces are formulated for a CHS GBT
element. Here, the stress resultants for the bending moment 𝑀𝑥 , 𝑀𝜃 , 𝑀𝑥𝜃 , and shear stress 𝑄𝑥 and
𝑄 𝜃 are the same as the ones shown in equations (2.60) to (2.64) since the plate in bending strains are
assumed to be linear. However, the membrane forces 𝑁𝑥 , 𝑁𝜃 , and 𝑁𝑥𝜃 in equations (5.97) to (5.101) are
formulated based on the nonlinear initial membrane strains 𝜀𝑥 , 𝜀𝜃 , and 𝛾̄𝑥𝜃 in equations (5.13), (5.16),
and (5.19). For a linearly elastic material, the corresponding initial stresses can be defined as:

𝜎̄𝑥 =
𝐸

1 − 𝜇2 (𝜀𝑥 + 𝜇𝜀𝜃 ) (5.94)

𝜎̄𝜃 =
𝐸

1 − 𝜇2 (𝜀𝜃 + 𝜇𝜀𝑥) (5.95)

𝜏𝑥𝜃 = 𝐺 𝛾̄𝑥𝜃 (5.96)

Substituting the initial stresses and strains in equations (5.94) to (5.96) and (5.13) to (5.19) and the GBT
displacement functions in equations (2.2) to (2.4) into the membrane stress resultants which are based
on the assumption (A3) in equations (5.97), (5.99) and (5.101), the GBT nonlinear membrane stress
resultants can be derived as:

𝑁𝑥 =

∫ +𝑡
2

−𝑡
2

𝜎̄𝑥 𝑑𝑧 (5.97)

= 𝑄

( ∞∑︁
𝑘=1

𝑘𝑢(𝜃)𝑘𝑉,𝑥𝑥 +
∞∑︁
𝑖=1

∞∑︁
𝑘=1

( 𝑖𝑢(𝜃)𝑘𝑢(𝜃)
2

𝑖𝑉,𝑥𝑥
𝑘𝑉,𝑥𝑥 +

𝑖𝑣(𝜃)𝑘𝑣(𝜃) + 𝑖𝑤(𝜃)𝑘𝑤(𝜃)
2

𝑖𝑉,𝑥
𝑘𝑉,𝑥

)
+ 𝜇

∞∑︁
𝑘=1

𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤 (𝜃)
𝑟

𝑘𝑉 + 𝜇
∞∑︁
𝑖=1

∞∑︁
𝑘=1

( 𝑖𝑢, 𝜃 (𝜃)𝑘𝑢, 𝜃 (𝜃)
2𝑟2

𝑖𝑉,𝑥
𝑘𝑉,𝑥

+
(
𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤 (𝜃)

) (
𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤 (𝜃)

)
+

(
𝑖𝑤, 𝜃 (𝜃) − 𝑖𝑣 (𝜃)

) (
𝑘𝑤, 𝜃 (𝜃) − 𝑘𝑣 (𝜃)

)
2𝑟2

𝑖𝑉 𝑘𝑉

))
(5.98)

𝑁𝜃 =

∫ +𝑡
2

−𝑡
2

𝜎̄𝜃 𝑑𝑧 (5.99)

= 𝑄

( ∞∑︁
𝑘=1

𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤 (𝜃)
𝑟

𝑘𝑉 +
∞∑︁
𝑖=1

∞∑︁
𝑘=1

( 𝑖𝑢, 𝜃 (𝜃)𝑘𝑢, 𝜃 (𝜃)
2𝑟2

𝑖𝑉,𝑥
𝑘𝑉,𝑥

+
(
𝑖𝑣, 𝜃 (𝜃) + 𝑖𝑤 (𝜃)

) (
𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤 (𝜃)

)
+

(
𝑖𝑤, 𝜃 (𝜃) − 𝑖𝑣 (𝜃)

) (
𝑘𝑤, 𝜃 (𝜃) − 𝑘𝑣 (𝜃)

)
2𝑟2

𝑖𝑉 𝑘𝑉

)
+ 𝜇

∞∑︁
𝑘=1

𝑘𝑢(𝜃)𝑘𝑉,𝑥𝑥 + 𝜇
∞∑︁
𝑖=1

∞∑︁
𝑘=1

( 𝑖𝑢(𝜃)𝑘𝑢(𝜃)
2

𝑖𝑉,𝑥𝑥
𝑘𝑉,𝑥𝑥 +

𝑖𝑣(𝜃)𝑘𝑣(𝜃) + 𝑖𝑤(𝜃)𝑘𝑤(𝜃)
2

𝑖𝑉,𝑥
𝑘𝑉,𝑥

))
(5.100)
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𝑁𝑥𝜃 =

∫ +𝑡
2

−𝑡
2

𝜏𝑥𝜃 𝑑𝑧 (5.101)

= 𝐺𝑡

( ∞∑︁
𝑘=1

( 𝑘𝑢, 𝜃 (𝜃)
𝑟

+ 𝑘𝑣 (𝜃)
)
𝑘𝑉,𝑥 +

∞∑︁
𝑖=1

∞∑︁
𝑘=1

( 𝑖𝑢 (𝜃)𝑘𝑢, 𝜃 (𝜃)
𝑟

𝑖𝑉,𝑥𝑥
𝑘𝑉,𝑥

+
𝑖𝑣 (𝜃)

(
𝑘𝑣, 𝜃 (𝜃) + 𝑘𝑤 (𝜃)

)
+ 𝑖𝑤 (𝜃)

(
𝑘𝑤, 𝜃 (𝜃) − 𝑘𝑣 (𝜃)

)
𝑟

𝑖𝑉,𝑥
𝑘𝑉

))
(5.102)

5.7 Numerical examples

In this section, two examples are presented involving the transverse and longitudinal bending of short
and long thin-walled circular pipes, respectively. The purpose of these examples is to validate and
illustrate the application and capabilities of the formulated GBT element by analyzing the nonlinear
relationship between transverse loading and cross-sectional deformations. Here, the GBT’s generalized
modal amplitude vector is determined within a single load step by solving equation (5.103) using the
Newton-Raphson incremental iterative solver method.

[𝐾T]
+

{𝑑} = {𝐹ext} − {𝐹int} (5.103)

where [𝐾T] is the member tangent stiffness matrix, {𝐹ext} is the external load vector, {𝐹int} is the
internal force vector, and {𝑑} is the incremental generalized modal amplitude vector. Both examples are
compared with equivalent shell finite element models using ANSYS [10] software. These models have
been developed using quadrilateral elements with 6 DoF per node which are based on Reissner-Mindlin’s
kinematic assumption with linear interpolation functions as implemented in the ANSYS software under
the name SHELL 181.

5.7.1 Transverse bending

In this example, a short strip of a circular pipe is considered to be under a projected loading. As shown
in Figure 5.9, the transverse loading 𝑞 is applied at the top and bottom of the cross-section in such a way
that the circular cross-section will undergo ovalization (or flattening if the contact is considered).

t
Z

Yr

T

T

(a) Cross-section

Z

X

/

T

T

(b) Longitudinal section

𝐿 = 200 mm
𝑟 = 500 mm
𝑡 = 10 mm
𝐸 = 205 GPa
𝜇 = 0.0

Figure 5.9: Pipe section under projected loading.
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5.7: Numerical examples

Since this example has a free boundary condition, no axial loading, an elastic material behavior and no
Poisson effect, the nonlinearity involved in this problem is effectively reduced to the nonlinear transverse
membrane strain which can be simplified as:

𝜀M
𝜃 =

𝑣, 𝜃 + 𝑤
𝑟

+ 1
2𝑟2

(
(𝑣, 𝜃 + 𝑤)2 + (𝑤, 𝜃 − 𝑣)2

)
(5.104)

This means to build the tangent stiffness matrix and the internal force vector, the only third and fourth
order tensors required will be 𝑗𝑖𝑘𝐵1 and 𝑗𝑙𝑖𝑘𝐵1. Furthermore, the non-conventional shear-u modes can
be neglected since there are no displacements in 𝑢.

As the first step in the GBT analysis, the projected load 𝑞 is transformed into the local coordinates, 𝑥, 𝜃,
and 𝑧, whereas the longitudinal component in the 𝑥 direction in this case is zero.

Table 5.1: External load modal decompo-
sition.

Mode 𝑘 𝑘𝑞𝜃
[ N

mm
]

𝑘𝑞𝑧
[ N

mm
]

𝑎 0 −𝜋 𝑞𝑟

5 −𝜋 𝑞𝑟 −2𝜋 𝑞𝑟
V
5 −𝜋 𝑞𝑟 0

Substituting equations (2.66) and (2.67) into equations
(2.33) and (2.34) the modal decomposition of the external
load can be determined in

[ N
mm

]
as:

𝑘𝑞𝜃 =

∫ 2𝜋

0
𝑞 sin(𝜃) cos(𝜃) 𝑘𝑣(𝜃) 𝑟𝑑𝜃 (5.105)

𝑘𝑞𝑧 =

∫ 2𝜋

0
−𝑞 cos(𝜃)2 𝑘𝑤(𝜃) 𝑟𝑑𝜃 (5.106)

As shown in Table 5.1, the only modes which have an external load contribution are 𝑎, 5, and
V
5, since

the respective integrals in equations (5.105) and (5.106) are zero for all other deformation modes. Here,
the selection of deformation modes to be considered for the analysis depends on the external modal load
participation, the third-order tensor 𝑗𝑖𝑘𝐵1, in Figure 5.3 and the fourth-order tensor 𝑗𝑙𝑖𝑘𝐵1 in Figure 5.6.
The two criteria for the selection of the deformation modes can be summarized as:

• First: all modes with external load participation should be considered.

• Second: since these modes with external load participation will produce deformations in the first
step of the analysis, which is a linear elastic analysis, they being the cause of the initial stress and
displacement, in the next step of the nonlinear analysis, they will activate other modes they are
coupled to in the third 𝑗𝑖𝑘𝐵1 and fourth order tensor 𝑗𝑙𝑖𝑘𝐵1 while building the tangent stiffness
matrix. However, if these newly activated modes failed to create the corresponding internal force
vector, they would have to be ignored. In other words, the modes without external load participation
must be activated based on the coupling tensors in the tangent stiffness matrix and the internal force
vector to be considered in the nonlinear GBT analysis. For example, due to the mode couplings
V
559𝐵1 and

V
55

V
9𝐵1, modes 9 and

V
9 will be activated in the tangent stiffness matrix and in the internal

force vector. This can be generalized in such a way that if 𝑗 and 𝑖 in the third-order coupling tensor
𝑗𝑖𝑘𝐵1 have an initial displacement, then mode 𝑘 will be activated, similarly, if 𝑗 , 𝑙, and 𝑖 in the
fourth-order coupling tensor 𝑗𝑙𝑖𝑘𝐵1 have an initial displacement, then mode 𝑘 will be activated.
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Based on these criteria, the types of deformation modes involved in a GBT nonlinear analysis can be
decided at the beginning of the analysis. In this example, the type of modes involved in the analysis are
(𝑎, 5,

V
5, 9,

V
9, 13,

V
13, 17,

V
17, 21,

V
21, . . . ). From this list, the number of modes to be considered can

be decided based on a displacement convergence analysis. As shown in Figure 5.12, modes up to
V

17 are
sufficient to reach the displacement convergence in the GBT analysis. In the second step of the GBT
analysis, the tangent element stiffness matrix [𝐾T]𝑒, the external force vector {𝐹ext}𝑒, and the internal
force vector {𝐹int}𝑒 are built in order to calculate the incremental generalized modal amplitude vector
{𝑑}𝑒 in equation (5.103). To determine the tangent element stiffness matrix and the internal force vector,
first all possible mode couplings must be identified in the third and fourth order coupling tensors. In this
example for the selected seven modes, which are 𝑎, 5,

V
5, 9,

V
9, 13, and

V
13, the possible nonzero number of

third-order mode couplings 𝑗𝑖𝑘𝐵1 are only 55 out of 73 = 343 total possibilities. Similarly, the possible
nonzero number of fourth-order mode couplings 𝑗𝑙𝑖𝑘𝐵1 are only 773 out of 74 = 2401 total possibilities.
This significant reduction in the possibilities of mode couplings is due to the brilliant modal nature of
GBT. Furthermore, only half of these couplings need to be calculated due to the symmetric nature of the
tensor 𝑗𝑖𝑘𝐵1 as shown in Figure (5.10).
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Figure 5.10: The third-order coupling tensor 𝑗𝑖𝑘𝐵1 considering only the selected modes.

The tangent element stiffness matrix, which is given in equation (5.82), is built after determining the
sub-matrices 𝑗𝑖𝑘 [𝑘] and 𝑗𝑙𝑖𝑘 [𝑘] in equations (5.72) to (5.75) and considering the nonzero third and fourth
order coupling tensor entities. Figure 5.11 shows the gradual development of the tangent stiffness matrix.
The grid in this figure represents the selected deformation modes 𝑎, 5,

V
5, 9,

V
9, 13, and

V
13. In this example,
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since the initial stress and displacements are assumed to be zero at the beginning of the nonlinear analysis,
the tangent stiffness matrix will be reduced to a linear stiffness matrix as shown in Figure 5.11a. However,
once the iteration is started to achieve an equilibrium condition within the load step, the tangent element
stiffness matrix will gradually become fully populated due to the coupling effect of the modes with initial
displacement and stresses with the rest of the selected modes. In each iteration step, new modes and
couplings between the modes will be activated. Here, for the selected type and number of deformation
modes, all third and fourth order mode couplings will be activated in the second iteration step as shown
in Figure 5.11c.
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(c) 2𝑛𝑑 iteration

Figure 5.11: The sparsity patterns of the element linear and tangent stiffness matrices (the dots correspond
to non-null entries).
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Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

In this example, only one GBT element is required to solve the problem since the displacements and
stresses are constant longitudinally. Therefore, the total number DoF of the GBT model is 28. On the
other hand, the equivalent shell element model for this example has 2, 880 DoF, which means the GBT
model’s number of DoF is less than 1.0 % of the number of DoF in the shell model. The element sizes
used for the shell element model are approximately 40 × 40 mm.

Even though the GBT model tangent stiffness matrix is fully populated as shown in Figure 5.11c, it
will still be much more computationally efficient than the shell model due to its very small size which
requires less number of operations and storage for computation. Furthermore, the computation of the
GBT model can be optimized using algorithms specialized for solving dense matrices. However, the
building processes of the GBT element nonlinear stiffness matrix and the internal forces vector can be
time consuming for problems involving a higher number of deformation modes due to the cubic and
quartic increase in the size of the third and fourth order modes coupling tensors, respectively.

In this example, using a load increment step of 𝑞 = 0.02
N

mm2 , the nonlinear response path of the short
circular pipe under projected loading is identified as shown in Figure 5.12. In this figure, the linear
solution which is the same for the GBT and shell model, the nonlinear solution of the shell model,
and the nonlinear solution of the GBT model considering different combinations of modes are shown.
Here, the nonlinear GBT solution converges considering deformation modes 𝑎, 5,

V
5, 9,

V
9, 13, and

V
13.
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Figure 5.12: The linear analysis (LA) and nonlinear analyses (NA) displacement response of the pipe
under gradually increasing load 𝑞.
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The consideration of additional deformation modes does not improve the GBT result. Furthermore,
considering the GBT deformation modes without the non-conventional shear-v modes or considering
only modes 𝑎, 5, and

V
5 will lead to a completely wrong result since the nonlinear membrane energy

cannot be correctly approximated by the combination of these modes.

In Figures 5.13 and 5.14, the 3D and 2D deformed configuration of the pipe is shown at 𝑞 = 0.14
N

mm2 .
Here, the mean relative difference between the GBT and shell model is below 2.0 % in the displacement
field. At this load, the total deformation of the cross-section is around 10.0 % of the pipe radius 𝑟 .

(a) GBT (b) Shell

Figure 5.13: The nonlinear deformation shape of the pipe (×5).

Max. = 42.68 
Min. = -42.69

(a) Linear analysis 𝑤 [mm] (×6)

Max. = 46.52 
Min. = -51.69

(b) Nonlinear analysis 𝑤 [mm] (×6)

 GBT
            Shell 
 Cross-section

Figure 5.14: Comparison of displacements at 𝑞 = 0.14
N

mm2 .

In Figure 5.15, the cross-sectional displacement is shown after increasing the load to 𝑞 = 0.24
N

mm2 .
At this load, the total deformation of the cross-section will become around 20.0 % of the pipe radius 𝑟
and the difference between the displacement field of the GBT and shell model will increase to 7.0 %,
since the approximation of the GBT model is limited by the total Lagrangian description. Here, it
can be summarized that the developed nonlinear GBT formulation in this chapter is only applicable
for deformations between 10.0 % to 20.0 %. To consider deformations higher than this, the current
formulation must be updated using advanced kinematic description such as the corotational method or
exact formulations not only in the longitudinal directions but also in the cross-sectional deformation
modes.
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Figure 5.15: Comparison of displacements at 𝑞 = 0.24
N

mm2 .

In Figure 5.16, the modal decomposition of GBT is presented for the longitudinal solution 𝑉 (𝑥). Since
the pipe has free boundary conditions and under a uniformly distributed load, the modal amplitudes are
constant along the length of the pipe. In this figure, it can be observed that deformation mode 5 has the
largest contribution among the conventional modes whereas mode

V
9 has the largest contribution among

the non-conventional modes.
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Figure 5.16: GBT deformation modes amplitude at 𝑞 = 0.14
N

mm2 .

In the last step of the nonlinear GBT analysis, the stress resultants are determined based on equations
(5.100), (2.61), and (2.64). In Figures 5.17 and 5.18, the linear and nonlinear analyses results of GBT
and shell are presented at 𝑞 = 0.14

N
mm2 . Similarly, in Figures 5.19 and 5.20, the linear and nonlinear

analyses results of GBT and shell are presented at 𝑞 = 0.24
N

mm2 .

Tables 5.2 and 5.3 summarize the quantitative deviations between the GBT and shell model analyses
using the mean relative difference (Equation (2.89)) and the standard deviation of the relative differences.
Here, the maximum difference of 21.10 % is observed between GBT and shell in the transversal normal
force, which can be due to the nonlinear membrane behavior. However, the comparison between the
GBT and shell model in the transverse bending moment and shear force show a good agreement which
is generally below 5.0 %.
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Table 5.2: Comparison of nonlinear analyses results of GBT and shell at 𝑞 = 0.14
N

mm2 .

𝑀𝜃 𝑁𝜃 𝑄 𝜃 𝑤

MRD [%] 1.38 9.79 0.95 1.98
Standard deviation [%] 0.16 8.02 0.36 0.16

Max. = -0.01 
Min. = -69.99

(a) 𝑁𝜃

Max. = 8747.80 
Min. = -8747.80

(b) 𝑀𝜃

Max. = 34.99 
Min. = -34.99

(c) 𝑄 𝜃

 GBT
            Shell 
 Cross-section

Figure 5.17: Stress resultants of the linear analysis at 𝑞 = 0.14
N

mm2 .
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Min. = -80.00

(c) 𝑄 𝜃
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            Shell 
 Cross-section

Figure 5.18: Stress resultants of the nonlinear analysis at 𝑞 = 0.14
N

mm2 .

Table 5.3: Comparison of nonlinear analyses results of GBT and shell at 𝑞 = 0.24
N

mm2 .

𝑀𝜃 𝑁𝜃 𝑄 𝜃 𝑤

MRD [%] 4.70 21.10 3.88 6.67
Standard deviation [%] 0.64 17.92 1.36 0.44

Max. = -0.02 
Min. = -119.98

(a) 𝑁𝜃

Max. = 14996.22 
Min. = -14996.22

(b) 𝑀𝜃

Max. = 59.98 
Min. = -59.98

(c) 𝑄 𝜃

 GBT
            Shell 
 Cross-section

Figure 5.19: Stress resultants of the linear analysis at 𝑞 = 0.24
N

mm2 .
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Figure 5.20: Stress resultants of the nonlinear analysis at 𝑞 = 0.24
N

mm2 .

5.7.2 Longitudinal bending

In this example, a cantilever thin-walled circular pipe is considered with a uniformly distributed line load
𝑞 at the free end of the pipe as shown in Figure 5.21. Due to the loading condition, a linear analysis
of this problem will not show any cross-sectional deformation in GBT or Shell based finite element
analysis. In GBT this can easily be understood since in a linear analysis the deformation modes are
decoupled and in this case the decomposition of the external load will only result in a rigid-body mode.
However, in a nonlinear analysis, there will be a cross-sectional deformation throughout the pipe and a
maximum ovalization will be expected near the support due to the strong coupling between rigid body
and local shell-type GBT deformation modes which directly stem from the membrane nonlinearities in
longitudinal, transverse, and shear directions.
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(a) Longitudinal section of the cantilever pipe

Y

Z

q

UW

(b) Loading at the free end

𝐿 = 10 m
𝑟 = 200 mm
𝑡 = 3 mm
𝐸 = 205 GPa
𝜇 = 0.0

Figure 5.21: Geometry, material property, loading and boundary condition of a cantilever circular pipe
section.

As the first step in the GBT analysis, the distributed load 𝑞 is transformed into the local coordinates, 𝑥, 𝜃,
𝑧, whereas the longitudinal component in the 𝑥 direction in this case is zero. As shown in Table 5.4, only
the modes 3 and

V
3 have an external load contribution since the integrals in equations (5.107) and (5.108)

are zero for all the other GBT deformation modes.
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Table 5.4: External load modal decompo-
sition.

Mode 𝑘 𝑘𝑞𝜃 [N] 𝑘𝑞𝑧 [N]

3 −𝑟𝜋𝑞 −𝑟𝜋𝑞
V
3 −𝑟𝜋𝑞 0

Using equations (3.80) and (3.81), which are derived for a
similar load case and substituting the GBT displacement
functions in equations (2.3) and (2.4), the modal decom-
position of the external load can be calculated as:

𝑘𝑞𝜃 =

∫ 2𝜋

0
𝑞 sin(𝜃) 𝑘𝑣(𝜃) 𝑟𝑑𝜃 (5.107)

𝑘𝑞𝑧 =

∫ 2𝜋

0
−𝑞 cos(𝜃) 𝑘𝑤(𝜃) 𝑟𝑑𝜃 (5.108)

Here, based on the two criteria discussed in the previous example, the types of deformation modes
involved in this example can be decided as follows:

• First: modes 3 and
V
3 should be considered since they have an external load participation.

• Second: the initial stresses and displacements produced by modes 3 and
V
3 in the first step of the

analysis will lead to a gradual activation of other modes. For example, considering the third-order
coupling tensor 𝑗𝑖𝑘𝐶1 shown in Figure 5.22, it can be observed that modes 3 and

V
3 will activate

modes 5 and
V
5 due to the coupling tensors 335𝐶1 and 33

V
5𝐶1. Then modes 5 and

V
5 will in turn

activate modes 7 and
V
7 in the next iteration step due to the coupling tensors 357𝐶1 and 35

V
7𝐶1.

In this example, the types of modes involved in the analysis due to the external load and the third and
fourth order coupling tensors related to 𝐶, 𝐵 and 𝐷 are 𝑎, 1, 3,

V
3,

U
3, 5,

V
5,

U
5, 7,

V
7,

U
7, 9,

V
9,

U
9, 11,

V
11,

U
11,

13,
V

13,
U

13, . . . . From this list, only modes up to
U

11 are sufficient to reach the displacement convergence
in the GBT analysis as shown in Figure 5.27. This makes the total number of modes considered in this
example equal to seventeen.

In the second step of the GBT analysis, the element tangent stiffness matrix [𝐾T]𝑒, the external force vector
{𝐹ext}𝑒, and the internal force vector {𝐹int}𝑒 are built in order to calculate the incremental generalized
modal amplitude vector {𝑑}𝑒 in equation (5.103). The assembly of the element tangent stiffness matrix
and the internal force vector requires the identification and calculation of all possible third and fourth
order mode couplings within the selected modes. In this example, for the selected seventeen modes the
number of possible nonzero mode couplings are listed below in comparison to the total possibilities.

• 279 in 𝑗𝑖𝑘𝐶1 out of 173 = 4913 (Figure 5.22)

• 116 in 𝑗𝑖𝑘𝐵1 out of 173 = 4913

• 201 in 𝑗𝑖𝑘𝐷1 out of 173 = 4913

• 5033 in 𝑗𝑙𝑖𝑘𝐶1 out of 174 = 83521

• 2648 in 𝑗𝑙𝑖𝑘𝐵1 out of 174 = 83521

• 2201 in 𝑗𝑙𝑖𝑘𝐷1 out of 174 = 83521
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Figure 5.22: The third-order coupling tensor 𝑗𝑖𝑘𝐶1 considering only the selected modes. Rows and
columns related to shear-u modes are not shown since they have no coupling.
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In Figures 5.23 and 5.24, the sparsity pattern of the element tangent stiffness matrices are shown as derived
from the sub-matrices 𝑗𝑖𝑘 [𝑘] and 𝑗𝑙𝑖𝑘 [𝑘], respectively. In these figures, each grid spacing represents the
selected 17 modes with their 4 DoF. Here, the size of the element stiffness matrix will be 17 × 4 = 68.
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(a) 1𝑠𝑡 iteration
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(b) 2𝑛𝑑 iteration

Figure 5.23: The sparsity patterns of the element initial linear stress and displacement stiffness matrices
(the dots correspond to non-null entries).
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(a) 1𝑠𝑡 iteration

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
non zero coefficients = 1936 (41.87%)

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

(b) 2𝑛𝑑 iteration

Figure 5.24: The sparsity patterns of the element initial quadratic stress and displacement stiffness
matrices (the dots correspond to non-null entries).

The gradual development of the tangent stiffness matrix is shown in these figures for the first two iteration
steps. In each iteration step, new deformation mode couplings are activated due to the initial stresses and
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displacements induced by the deformation modes activated in the previous step. Similarly, the system
tangent stiffness develops gradually starting from the linear stiffness matrix in Figure 5.25a, to a denser
tangent stiffness matrix in the following iteration steps due to the newly activated deformation mode
couplings. Here, the GBT model is discretized longitudinally by 20 elements, which is enough to reach
a displacement convergence of above 99.00 % as shown in Figure 5.26.
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Figure 5.25: The sparsity patterns of the system tangent stiffness matrices.

Considering the numbers of modes and elements used, the total degrees of freedom for the GBT model is
733 which is below 0.40 % of the equivalent shell element model which has 192, 384 DoF. The element
sizes used for the shell element model are approximately 20 × 20 mm.

137



5.7: Numerical examples

2 4 6 8 10 12 14 16 18 20 22 24
Number of GBT elements

830
840
850
860
870
880
890
900
910
920
930
940
950

M
ax

. t
ip

 d
is

pl
ac

em
en

t [
m

m
]

2 4 6 8 10 12 14 16 18 20 22 24
Number of GBT elements

0

1

2

3

4

5

6

7

8

9

10

11

12

M
ea

n 
re

la
tiv

e 
di

ffe
re

nc
e 

[%
]

Figure 5.26: GBT solution convergence.
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Figure 5.27: The linear analysis (LA) and nonlinear analysis (NA) transverse or radial displacement
response of the cantilever pipe under gradually increasing load 𝑞.

In this example, using a load increment step of 𝑞 =
2250
2𝜋𝑟

= 1.79
N

mm
, the nonlinear response path of the

cantilever pipe is shown considering the radial displacement 𝑤 in Figure 5.27. In this figure, the linear
solution which is the same for the GBT and shell model, the nonlinear solution of the shell model, and
the nonlinear solution of the GBT model considering different combinations of modes are shown. Here,
the nonlinear GBT solution only converges up to the load level 𝑞 = 35.81

N
mm

considering deformation
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modes 𝑎, 1, 3,
V
3,

U
3, 5,

V
5,

U
5, 7,

V
7,

U
7, 9,

V
9,

U
9, 11,

V
11, and

U
11. A consideration of additional deformation

modes does not improve the GBT’s result. Similarly, in Figure 5.28 the nonlinear response path of the
cantilever pipe is shown considering the warping or longitudinal displacement 𝑢. In this figure, the
nonlinear behavior of the problem is more visible and starts from the early stage of the nonlinear analysis
since the deformation mode 3, which is the only cause of warping displacement in the linear analysis,
will initiate a significant warping displacement of deformation mode 1 in the nonlinear analysis due to
the third-order coupling tensor 331𝐶1 and 313𝐶1 in the initial displacement and 133𝐶1 in the initial stress
stiffness matrices in equations (5.72) and (5.74), respectively.
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Figure 5.28: The linear analysis (LA) and nonlinear analysis (NA) longitudinal or warping displacement
response of the cantilever pipe under gradually increasing load 𝑞.

(a) GBT (b) Shell

Figure 5.29: The deformation shape of the cantilever pipe at 𝑞 = 35.81
N

mm
(×4).
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In Figure 5.29, the deformed configuration of the cantilever pipe is shown at 𝑞 = 35.81
N

mm
with a

maximum ovalization at 0.25𝐿 from the support . Here, the mean relative difference between the GBT
and the shell model is below 2.5 % in the displacement field. At this load, the total deformation of the
cross-section is around 10.0 % of the pipe length 𝐿.

In Figure 5.30, the modal decomposition of the GBT’s solution is presented for the longitudinal amplitude
function𝑉 (𝑥). According to the results of modes 1 and 3, the maximum displacement occurs at the tip of
the cantilever pipe. Due to this displacement, the maximum cross-sectional ovalization occurs at around
𝑥 = 0.25𝐿 in mode 5. In the case of a higher load or a large displacement, the pipe will gradually lose all
bending stiffness at around 𝑥 = 0.25𝐿 and will form a hinge. Generally, the local shell-type conventional
and the shear-v (SV) non-conventional modes have a higher amplitude near the support. In this figure, it
can be observed that the shear-u (SU) modes in general have a higher contribution than the shear-v (SV)
modes.
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Figure 5.30: GBT deformation modes amplitude of the cantilever pipe at 𝑞 = 32.23
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Chapter 5: Geometrically nonlinear formulation of GBT for straight pipes

In Figures 5.31 to 5.33, the cross-sectional displacement at the free end of the pipe (or tip) and at section
A are shown for both GBT and shell models. Here, for the purpose of comparison, the results of the linear
and nonlinear analyses are presented at the same load 𝑞 = 32.23

N
mm

. The nonlinear cross-sectional
displacement at the tip shows almost no local deformations in comparison to the local deformation
𝑤𝑙𝑜𝑐𝑎𝑙 = 18.84 mm at the section A. From the linear displacement results, it can be concluded that local
cross-sectional deformations cannot be determined using a linear analysis in this example. At this load
level, the mean relative difference of the nonlinear displacement between the GBT and shell model is
below 0.5 %
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Min. = -951.36

(b) nonlinear 𝑤 (×0.2)
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            Shell 
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Figure 5.31: Comparison of displacements in [mm] at the tip of the cantilever pipe.
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Figure 5.32: Comparison of nonlinear analysis displacements in [mm] at section A.
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Figure 5.33: Comparison of linear analysis displacements in [mm] at section A.

In Figures 5.34 to 5.38, the linear and nonlinear analyses stress resultants of the GBT and shell model are
presented at the load level 𝑞 = 32.23

N
mm

. Confirming with the large ovalization displacement at section
A, the nonlinear transverse bending moment 𝑀𝜃 also has a large value at this section.

141



5.7: Numerical examples

Max. = 7.56 
Min. = -17.27

(a) 𝑀𝑥

Max. = 601.24 
Min. = -680.04

(b) 𝑀𝜃

Max. = 16.94 
Min. = -16.94

(c) 𝑀𝑥𝜃

 GBT
            Shell 
 Cross-section

Figure 5.34: Comparison of nonlinear analysis bending moments in
[
Nmm
mm

]
at section A.
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Figure 5.35: Comparison of linear analysis bending moments in
[
Nmm
mm

]
at section A.
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Figure 5.36: Comparison of nonlinear analysis normal forces in
[
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]
at section A.
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Figure 5.37: Comparison of linear analysis normal forces in
[

N
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]
at section A.
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Figure 5.38: Comparison of nonlinear analysis shear forces in
[
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]
at section A.

Table 5.5: Comparison of nonlinear analysis results of GBT and shell model at section A.

𝑀𝑥 𝑀𝜃 𝑀𝑥𝜃 𝑁𝑥 𝑁𝜃 𝑁𝑥𝜃 𝑄𝑥 𝑄 𝜃 𝑤local 𝑤bending 𝑤total

MRD [%] 1.20 14.32 4.29 12.37 1.47 17.59 29.93 1.87 1.51 0.11 0.42
Standard deviation [%] 0.20 16.02 2.42 13.13 0.55 14.26 11.01 1.58 0.69 0.00 0.15

In Table 5.5, the quantitative deviations between the GBT and shell model analyses are summarized using
the mean relative difference (Equation (2.89)) and the standard deviation of the relative differences. Here,
the differences in the major stress resultants between the GBT and shell model are below 18.0 %.

5.8 Summary

In this chapter, the complete nonlinear membrane strain definition is considered in the formulation of
the GBT tangent stiffness matrix and the internal forces. In comparison, the latest GBT study conducted
by Basaglia [16] on the buckling analysis of CHS only considers the linear initial stress stiffness matrix
[𝐾𝜎L] associated with the longitudinal and shear membrane strains which limits the method to the
analysis of members under axial compression and external pressure.

The geometrically nonlinear GBT analysis formulation developed in this chapter is applicable for thin-
walled circular pipes under any arbitrary loading condition with small to moderate displacements
(10 % to 20 % of the largest dimension of the member). This formulation can be extended to a large
displacement and strain analysis by the modification of the kinematic assumptions made in this study
towards more advanced or exact kinematic descriptions [119, 154].

In the numerical examples presented, the GBT solutions are shown to converge in terms of the displace-
ment field components with an increasing number of modes taken into account. In all examples, the
mean relative difference between GBT and shell models in the displacement fields is below 2.5 %, when
the maximum displacement is about 10 % of the largest dimension of the member. Similarly, the mean
relative difference in the stress fields is below 18.0 % for the two models. Furthermore, the numerical
examples show that the GBT uses a much fewer number of DoF to achieve an accurate solution in both
stress and displacement fields than the shell finite element analysis. Particularly in the second example,
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5.8: Summary

the GBT model has only 0.40 % of the DoF needed in the shell model. However, the assembly processes of
the GBT element nonlinear stiffness matrix and internal forces vector can be a time consuming procedure
due to the need for identification and calculation of the third and fourth order mode coupling tensors.
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Chapter 6

Conclusion and outlook

6.1 Conclusion

The main contribution of this dissertation is the development of a GBT formulation for linear static
and dynamic analyses of thin-walled pipes with circular axis, and the geometrically nonlinear analysis
of thin-walled straight pipes. Unlike the linear analysis of long straight pipes in classical GBT, these
problems involve the coupling of the GBT deformation modes, and cannot be solved without eliminating
the classical GBT assumption of null transverse and shear membrane energy through the consideration
of non-conventional modes.

In GBT, the displacement fields of a thin-walled circular pipe member are described based on the
separation of variables principle which leads to two analysis steps involving the cross-section and the
longitudinal direction. In the cross-sectional analysis, a decomposition in the Fourier-Series is applied to
the cross-sectional displacements to determine the GBT deformation modes. In the longitudinal direction,
a standard beam finite element method is applied to determine the amplitude of these deformation modes.

The linear GBT formulation presented in Chapter 2 shows the fundamental concept of GBT starting from
the classical GBT formulation to the state-of-the-art shear deformable GBT formulation. This chapter has
a minor contribution in including the effect of the Poisson ratio in the shear deformable GBT formulation,
which is otherwise ignored in the classical GBT formulation due to the lack of membrane transverse
stresses. As a numerical example, the analysis of a short cantilever pipe under a projected loading is
presented using the shear deformable GBT element which shows a very good agreement with the finely
discretized equivalent shell finite element model in displacement and stress fields. Here, the difference
between the two models is below 0.35 % in the displacement fields and is below 6 % in the stress fields.
Due to the significantly lower discretization required by GBT, in this example, the GBT model needs less
than 1.0 % of the computation time needed by the shell element model.

As an additional minor contribution in Chapter 2, the possibility of a locking problem in the shear
deformable GBT element is investigated using specially formulated examples to test the shear and
membrane locking problems. The GBT element passes both tests successfully without developing any
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parasitic strains or stresses. However, it must be noted that the types of non-conventional modes introduced
in the shear deformable GBT formulation leads to a strong coupling with conventional modes. Since
this coupling reduces the computational efficiency of GBT, alternative types of non-conventional modes
which have a reduced coupling effect needs to be investigated [28].

Chapter 3 has a major contribution in the formulation of GBT for the linear static analysis of naturally
curved thin-walled circular pipes (pipe bends). In this formulation, the virtual work of internal and
external forces is derived based on the linear kinematic description of the curved shell theory. In the
cross-sectional analysis of GBT, the deformation modes of a straight pipe developed in Chapter 2 are
reformulated to include the effect of the toroidal to cross-sectional radius ratio in pipe bends. The GBT
element stiffness matrix formulated for pipe bends has coupling within even and odd modes while no
coupling exists between even and odd modes. These couplings increase the density of the element stiffness
matrix by about 50 %.

The curved pipe numerical examples presented in Chapter 3 show convergence in terms of the dis-
placement field components with an increasing number of deformation modes and the longitudinal
discretization. In these examples, the mean relative difference between GBT and shell models in the
displacement fields is below 0.2 %. In some cases, it is observed that the number of GBT modes needed
for the convergences of the stress field can be higher than that of the displacement field. In the examples
studied, the stress field components of the GBT solutions in regions distant from the boundaries converge
faster than those close to the boundaries. Here, depending on the location of the cross-section, the mean
relative difference between GBT and shell models in the stress fields can be up to 6 %. Remarkably,
the comparison of computation speed between the GBT and shell shows that the GBT models need less
than 1.5 % of the time needed by the shell element models. However, the formulated displacement-based
curved GBT element fails the membrane locking test, and therefore it should not be applied for the
analysis of members with a higher slenderness ratio.

In Chapter 4 the major contribution is the formulation of GBT for the dynamic analyses of pipe bends
which is an extension of the formulation presented in Chapter 3. In this formulation, the consistent
element mass matrix is derived from the variation of the kinetic energy. Similar to the element stiffness
matrix, the mass matrix is densely populated which can be a hindrance for the future implementation
of the explicit finite element method without lumping the mass matrix. Here, two numerical examples
have been presented involving the analysis of undamped free vibration of truncated and closed toroidal
shells. The eigenvalues of the GBT modal solution converge with an increasing number of deformation
modes. Based on the modal decomposition of GBT, the shear modes have a significant contribution to the
vibration modes. In both examples, the relative difference between the GBT and shell models regarding
the natural frequencies did not exceed 0.80%. In addition, the MAC values have demonstrated the full
correlation of the mode shapes between the GBT and the shell models. Hence, the small number of GBT
deformation modes and elements used in the GBT modal analysis provides a comprehensive insight into
the structural behavior of curved members with significantly fewer DoF than the shell element models.
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In Chapter 5 the geometrically nonlinear GBT is formulated for the analysis of straight pipes. The third
and fourth order deformation mode couplings involved in this analysis are far more complicated than the
second order mode couplings in Chapter 3. The major contribution of this chapter is the formulation of
the linear and quadratic tangent stiffness matrix and the internal force vector based on the linearization
of the nonlinear response curve and the high order deformation mode coupling tensors. This formulation
is applicable to the nonlinear analysis of thin-walled circular pipes under any arbitrary loading condition
which causes small to moderate displacement.

The two numerical examples presented in Chapter 5 show the detailed procedure involved in the nonlinear
GBT analysis of pipe members. In the second example, the increase in the cross-sectional ovalization of
the circular pipe section is shown due to longitudinal bending. In both examples, the difference between
GBT and shell models in displacement fields is below 2.5 %, when the maximum displacement is about
10 % of the largest dimension of the member. Similarly, the mean relative difference in the stress fields
is below 18.0 % for the two models. Furthermore, the numerical examples show that GBT uses a much
smaller number of DoF than the shell finite element analysis to achieve an accurate solution in both stress
and displacement fields. Particularly in the second example, the GBT model has only 0.40 % of the DoF
needed in the shell model. However, the assembly processes of the GBT element nonlinear stiffness
matrix and internal forces vector can be a time consuming procedure due to the need for identification
and calculation of the third and fourth order mode coupling tensors.

Throughout this dissertation, GBT has shown a remarkable computational performance in the analysis
of thin-walled circular pipe sections. Although the GBT stiffness matrix is relatively dense and has a
low sparsity in comparison to the shell finite element method, the GBT stiffness matrix still requires
significantly less storage (memory) due to its relatively small size. Furthermore, the computation of the
GBT stiffness matrix can be optimized by applying algorithms specialized for dense matrices.

Based on the formulations and Python codes developed in this dissertation, and the recent studies which
have developed a coupling scheme between the GBT and the shell finite element analysis [30, 95, 96], it is
possible to incorporate GBT into standard commercial FEM software packages and utilize the exceptional
computational efficiency of GBT in prismatic and circular thin-walled cross-sections. However, further
studies are required which are stated in the next section.

6.2 Outlook

Related to the study areas presented in this dissertation, several topics can be suggested for further studies.
These are:

• A systematic determination of the required GBT deformation modes at the beginning of the analysis.
Currently, the only way to determine the number of deformation modes needed for the analysis is
based on a convergence analysis. Since this procedure is time consuming and unpractical, more
systematic and efficient ways need to be investigated such as by employing an error measurement to
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estimate the number of Fourier series terms needed for the approximation with a certain accuracy.

• The geometrical nonlinear formulation of curved pipes: the formulation developed in Chapter 5
can be extended for analysis of pipe bends. Here, one can start by updating the nonlinear membrane
strain equations (5.7), (5.8) and (5.9) for straight pipes to the following equations which represent
the nonlinear membrane strain relationship for pipe bends:

𝜀M
𝜑 =

1
𝑅𝜉

(
𝑢,𝜑 − 𝑣 sin(𝜃) + 𝑤 cos(𝜃)

)
+ 1

2(𝑅𝜉)2

( (
𝑢,𝜑 − 𝑣 sin(𝜃) + 𝑤 cos(𝜃)

)2 +
(
𝑣,𝜑 + 𝑢 sin(𝜃)

)2 +
(
𝑤,𝜑 + 𝑢 cos(𝜃)

)2
)

(6.1)

𝜀M
𝜃 =

𝑣, 𝜃 + 𝑤
𝑟

+ 1
2𝑟2

(
𝑢2
, 𝜃 + (𝑣, 𝜃 + 𝑤)2 + (𝑤, 𝜃 − 𝑣)2

)
(6.2)

𝛾M
𝜑𝜃 =

𝑢, 𝜃

𝑟
+ 1
𝜉

(
𝑣,𝜑

𝑅
+ 𝑢 sin(𝜃)

𝑅

)
+ 1
𝑟𝑅𝜉

( (
𝑢,𝜑 − 𝑣 sin(𝜃) + 𝑤 cos(𝜃)

)
𝑢, 𝜃

+
(
𝑣,𝜑 + 𝑢 sin(𝜃)

)
(𝑣, 𝜃 + 𝑤) +

(
𝑤,𝜑 + 𝑢 cos(𝜃)

)
(𝑤, 𝜃 − 𝑣)

)
(6.3)

• The mixed GBT formulation of circular pipe bends: to overcome the membrane locking problem,
which is observed in the displacement-based finite element formulation of the curved GBT element
presented in Chapter 3, a mixed finite element formulation can be employed based on the Hellinger-
Reissner variational principle [73, 118].

• The geometrically exact GBT formulation: the total Lagrangian formulation presented in Chapter
5 is limited to a small-to-moderate displacement range. This formulation can be extended for the
analysis of large strains, deflections, and rotations based on Reissner-Simo’s exact beam theory
[119, 154].

• The lumping of the consistent GBT element mass matrix formulated in Chapter 4 : a diagonal
or lumped mass matrix is an essential prerequisite for the explicit finite element based transient
analysis of thin-walled pipes. Here, the applicability of methods such as the manifold-based mass
lumping scheme [50] and the selective mass scaling technique [165] can be investigated.

• The formulation of GBT based on the explicit finite element method [175] for the analysis of
complex dynamic problems involving large deformations and rotations, such as the demolition of
guyed masts.
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