## ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar

### Refine

#### Document Type

- Doctoral Thesis (39)
- Habilitation (1)

#### Institute

- Institut für Strukturmechanik (ISM) (30)
- Professur Baustatik und Bauteilfestigkeit (4)
- Professur Modellierung und Simulation - Mechanik (3)
- Bauhaus-Institut für zukunftsweisende Infrastruktursysteme (b.is) (1)
- Professur Modellierung und Simulation - Konstruktion (1)
- Professur Stochastik und Optimierung (1)

#### Keywords

- Finite-Elemente-Methode (7)
- Isogeometric Analysis (7)
- Isogeometrische Analyse (6)
- Strukturmechanik (4)
- finite element method (4)
- Beton (3)
- FEM (3)
- Finite Element Method (3)
- Gestaltoptimierung (3)
- Mehrskalenmodell (3)

2023,1

Biomembranes are selectively permeable barriers that separate the internal components of the cell from its surroundings. They have remarkable mechanical behavior which is characterized by many phenomena, but most noticeably their fluid-like in-plane behavior and solid-like out-of-plane behavior. Vesicles have been studied in the context of discrete models, such as Molecular Dynamics, Monte Carlo methods, Dissipative Particle Dynamics, and Brownian Dynamics. Those methods, however, tend to have high computational costs, which limited their uses for studying atomistic details. In order to broaden the scope of this research, we resort to the continuum models, where the atomistic details of the vesicles are neglected, and the focus shifts to the overall morphological evolution. Under the umbrella of continuum models, vesicles morphology has been studied extensively. However, most of those studies were limited to the mechanical response of vesicles by considering only the bending energy and aiming for the solution by minimizing the total energy of the system. Most of the literature is divided between two geometrical representation methods; the sharp interface methods and the diffusive interface methods. Both of those methods track the boundaries and interfaces implicitly. In this research, we focus our attention on solving two non-trivial problems. In the first one, we study a constrained Willmore problem coupled with an electrical field, and in the second one, we investigate the hydrodynamics of a vesicle doublet suspended in an external viscous fluid flow.
For the first problem, we solve a constrained Willmore problem coupled with an electrical field using isogeometric analysis to study the morphological evolution of vesicles subjected to static electrical fields. The model comprises two phases, the lipid bilayer, and the electrolyte. This two-phase problem is modeled using the phase-field method, which is a subclass of the diffusive interface methods mentioned earlier. The bending, flexoelectric, and dielectric energies of the model are reformulated using the phase-field parameter. A modified Augmented-Lagrangian (ALM) approach was used to satisfy the constraints while maintaining numerical stability and a relatively large time step. This approach guarantees the satisfaction of the constraints at each time step over the entire temporal domain.
In the second problem, we study the hydrodynamics of vesicle doublet suspended in an external viscous fluid flow. Vesicles in this part of the research are also modeled using the phase-field model. The bending energy and energies associated with enforcing the global volume and area are considered. In addition, the local inextensibility condition is ensured by introducing an additional equation to the system. To prevent the vesicles from numerically overlapping, we deploy an interaction energy definition to maintain a short-range repulsion between the vesicles. The fluid flow is modeled using the incompressible Navier-Stokes equations and the vesicle evolution in time is modeled using two advection equations describing the process of advecting each vesicle by the fluid flow. To overcome the velocity-pressure saddle point system, we apply the Residual-Based Variational MultiScale (RBVMS) method to the Navier-Stokes equations and solve the coupled systems using isogeometric analysis. We study vesicle doublet hydrodynamics in shear flow, planar extensional flow, and parabolic flow under various configurations and boundary conditions.
The results reveal several interesting points about the electrodynamics and hydrodynamics responses of single vesicles and vesicle doublets. But first, it can be seen that isogeometric analysis as a numerical tool has the ability to model and solve 4th-order PDEs in a primal variational framework at extreme efficiency and accuracy due to the abilities embedded within the NURBS functions without the need to reduce the order of the PDE by creating an intermediate environment. Refinement whether by knot insertion, order increasing or both is far easier to obtain than traditional mesh-based methods. Given the wide variety of phenomena in natural sciences and engineering that are mathematically modeled by high-order PDEs, the isogeometric analysis is among the most robust methods to address such problems as the basis functions can easily attain high global continuity.
On the applicational side, we study the vesicle morphological evolution based on the electromechanical liquid-crystal model in 3D settings. This model describing the evolution of vesicles is composed of time-dependent, highly nonlinear, high-order PDEs, which are nontrivial to solve. Solving this problem requires robust numerical methods, such as isogeometric analysis. We concluded that the vesicle tends to deform under increasing magnitudes of electric fields from the original sphere shape to an oblate-like shape. This evolution is affected by many factors and requires fine-tuning of several parameters, mainly the regularization parameter which controls the thickness of the diffusive interface width. But it is most affected by the method used for enforcing the constraints. The penalty method in presence of an electrical field tends to lock on the initial phase-field and prevent any evolution while a modified version of the ALM has proven to be sufficiently stable and accurate to let the phase-field evolve while satisfying the constraints over time at each time step. We show additionally the effect of including the flexoelectric nature of the Biomembranes in the computation and how it affects the shape evolution as well as the effect of having different conductivity ratios. All the examples were solved based on a staggered scheme, which reduces the computational cost significantly.
For the second part of the research, we consider vesicle doublet suspended in a shear flow, in a planar extensional flow, and in a parabolic flow. When the vesicle doublet is suspended in a shear flow, it can either slip past each other or slide on top of each other based on the value of the vertical displacement, that is the vertical distance between the center of masses between the two vesicles, and the velocity profile applied. When the vesicle doublet is suspended in a planar extensional flow in a configuration that resembles a junction, the time in which both vesicles separate depends largely on the value of the vertical displacement after displacing as much fluid from between the two vesicles. However, when the vesicles are suspended in a tubular channel with a parabolic fluid flow, they develop a parachute-like shape upon converging towards each other before exiting the computational domain from the predetermined outlets. This shape however is affected largely by the height of the tubular channel in which the vesicle is suspended. The velocity essential boundary conditions are imposed weakly and strongly. The weak implementation of the boundary conditions was used when the velocity profile was defined on the entire boundary, while the strong implementation was used when the velocity profile was defined on a part of the boundary. The strong implementation of the essential boundary conditions was done by selectively applying it to the predetermined set of elements in a parallel-based code. This allowed us to simulate vesicle hydrodynamics in a computational domain with multiple inlets and outlets. We also investigate the hydrodynamics of oblate-like shape vesicles in a parabolic flow. This work has been done in 2D configuration because of the immense computational load resulting from a large number of degrees of freedom, but we are actively seeking to expand it to 3D settings and test a broader set of parameters and geometrical configurations.

2022,12

Analysis of Functionally Graded Porous Materials Using Deep Energy Method and Analytical Solution
(2022)

Porous materials are an emerging branch of engineering materials that are composed of two elements: One element is a solid (matrix), and the other element is either liquid or gas. Pores can be distributed within the solid matrix of porous materials with different shapes and sizes. In addition, porous materials are lightweight, and flexible, and have higher resistance to crack propagation and specific thermal, mechanical, and magnetic properties. These properties are necessary for manufacturing engineering structures such as beams and other engineering structures. These materials are widely used in solid mechanics and are considered a good replacement for classical materials by many researchers recently. Producing lightweight materials has been developed because of the possibility of exploiting the properties of these materials. Various types of porous material are generated naturally or artificially for a specific application such as bones and foams. Like functionally graded materials, pore distribution patterns can be uniform or non-uniform. Biot’s theory is a well-developed theory to study the behavior of poroelastic materials which investigates the interaction between fluid and solid phases of a fluid-saturated porous medium.
Functionally graded porous materials (FGPM) are widely used in modern industries, such as aerospace, automotive, and biomechanics. These advanced materials have some specific properties compared to materials with a classic structure. They are extremely light, while they have specific strength in mechanical and high-temperature environments. FGPMs are characterized by a gradual variation of material parameters over the volume. Although these materials can be made naturally, it is possible to design and manufacture them for a specific application. Therefore, many studies have been done to analyze the mechanical and thermal properties of FGPM structures, especially beams.
Biot was the pioneer in formulating the linear elasticity and thermoelasticity equations of porous material. Since then, Biot's formulation has been developed in continuum mechanics which is named poroelasticity. There are obstacles to analyzing the behavior of these materials accurately like the shape of the pores, the distribution of pores in the material, and the behavior of the fluid (or gas) that saturated pores. Indeed, most of the engineering structures made of FGPM have nonlinear governing equations. Therefore, it is difficult to study engineering structures by solving these complicated equations.
The main purpose of this dissertation is to analyze porous materials in engineering structures. For this purpose, the complex equations of porous materials have been simplified and applied to engineering problems so that the effect of all parameters of porous materials on the behavior of engineering structure has been investigated.
The effect of important parameters of porous materials on beam behavior including pores compressibility, porosity distribution, thermal expansion of fluid within pores, the interaction of stresses between pores and material matrix due to temperature increase, effects of pore size, material thickness, and saturated pores with fluid and unsaturated conditions are investigated.
Two methods, the deep energy method, and the exact solution have been used to reduce the problem hypotheses, increase accuracy, increase processing speed, and apply these in engineering structures. In both methods, they are analyzed nonlinear and complex equations of porous materials.
To increase the accuracy of analysis and study of the effect of shear forces, Timoshenko and Reddy's beam theories have been used. Also, neural networks such as residual and fully connected networks are designed to have high accuracy and less processing time than other computational methods.

2022,10

Due to the development of new technologies and materials, optimized bridge design has recently gained more attention. The aim is to reduce the bridge components materials and the CO2 emission from the cement manufacturing process. Thus, most long-span bridges are designed to be with high flexibility, low structural damping, and longer and slender spans. Such designs lead, however, to aeroelastic challenges. Moreover, the consideration of both the structural and aeroelastic behavior in bridges leads to contradictory solutions as the structural constraints lead to deck prototypes with high depth which provide high inertia to material volume ratios. On the other hand, considering solely the aerodynamic requirements, slender airfoil-shaped bridge box girders are recommended since they prevent vortex shedding and exhibit minimum drag. Within this framework comes this study which provides approaches to find optimal bridge deck cross-sections while considering the aerodynamic effects. Shape optimization of deck cross-section is usually formulated to minimize the amount of material by finding adequate parameters such as the depth, the height, and the thickness and while ensuring the overall stability of the structure by the application of some constraints. Codes and studies have been implemented to analyze the wind phenomena and the structural responses towards bridge deck cross-sections where simplifications have been adopted due to the complexity and the uniqueness of such components besides the difficulty of obtaining a final model of the aerodynamic behavior. In this thesis, two main perspectives have been studied; the first is fully deterministic and presents a novel framework on generating optimal aerodynamic shapes for streamlined and trapezoidal cross-sections based on the meta-modeling approach. Single and multi-objective optimizations were both carried out and a Pareto Front is generated. The performance of the optimal designs is checked afterwards. In the second part, a new strategy based on Reliability-Based Design Optimization (RBDO) to mitigate the vortex-induced vibration (VIV) on the Trans-Tokyo Bay bridge is proposed. Small changes in the leading and trailing edges are presented and uncertainties are considered in the structural system. Probabilistic constraints based on polynomial regression are evaluated and the problem is solved while applying the Reliability Index Approach (RIA) and the Performance Measure Approach (PMA). The results obtained in the first part showed that the aspect ratio has a significant effect on the aerodynamic behavior where deeper cross-sections have lower resistance against flutter and should be avoided. In the second part, the adopted RBDO approach succeeded to mitigate the VIV, and it is proven that designs with narrow or prolonged bottom-base length and featuring an abrupt surface change in the leading and trailing edges can lead to high vertical vibration amplitude. It is expected that this research will help engineers with the selections of the adequate deck cross-section layout, and encourage researchers to apply concepts of optimization regarding this field and develop the presented approaches for further studies.

2022,9

Material failure can be tackled by so-called nonlocal models, which introduce an intrinsic length scale into the formulation and, in the case of material failure, restore the well-posedness of the underlying boundary value problem or initial boundary value problem. Among nonlocal models, peridynamics (PD) has attracted a lot of attention as it allows the natural transition from continuum to discontinue and thus allows modeling of discrete cracks without the need to describe and track the crack topology, which has been a major obstacle in traditional discrete crack approaches. This is achieved by replacing the divergence of the Cauchy stress tensor through an integral over so-called bond forces, which account for the interaction of particles. A quasi-continuum approach is then used to calibrate the material parameters of the bond forces, i.e., equating the PD energy with the energy of a continuum. One major issue for the application of PD to general complex problems is that they are limited to fairly simple material behavior and pure mechanical problems based on explicit time integration. PD has been extended to other applications but losing simultaneously its simplicity and ease in modeling material failure. Furthermore, conventional PD suffers from instability and hourglass modes that require stabilization. It also requires the use of constant horizon sizes, which drastically reduces its computational efficiency. The latter issue was resolved by the so-called dual-horizon peridynamics (DH-PD) formulation and the introduction of the duality of horizons.
Within the nonlocal operator method (NOM), the concept of nonlocality is further extended and can be considered a generalization of DH-PD. Combined with the energy functionals of various physical models, the nonlocal forms based on the dual-support concept can be derived. In addition, the variation of the energy functional allows implicit formulations of the nonlocal theory. While traditional integral equations are formulated in an integral domain, the dual-support approaches are based on dual integral domains. One prominent feature of NOM is its compatibility with variational and weighted residual methods. The NOM yields a direct numerical implementation based on the weighted residual method for many physical problems without the need for shape functions. Only the definition of the energy or boundary value problem is needed to drastically facilitate the implementation. The nonlocal operator plays an equivalent role to the derivatives of the shape functions in meshless methods and finite element methods (FEM). Based on the variational principle, the residual and the tangent stiffness matrix can be obtained with ease by a series of matrix multiplications. In addition, NOM can be used to derive many nonlocal models in strong form.
The principal contributions of this dissertation are the implementation and application of NOM, and also the development of approaches for dealing with fractures within the NOM, mostly for dynamic fractures. The primary coverage and results of the dissertation are as follows:
-The first/higher-order implicit NOM and explicit NOM, including a detailed description of the implementation, are presented. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combining with the method of weighted residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. For the sake of conciseness, the implementation in this chapter is focused on linear elastic solids only, though the NOM can handle more complex nonlinear problems. An explicit nonlocal operator method for the dynamic analysis of elasticity solid problems is also presented. The explicit NOM avoids the calculation of the tangent stiffness matrix as in the implicit NOM model. The explicit scheme comprises the Verlet-velocity algorithm. The NOM can be very flexible and efficient for solving partial differential equations (PDEs). It's also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Several numerical examples are presented to show the capabilities of this method.
-A nonlocal operator method for the dynamic analysis of (thin) Kirchhoff plates is proposed. The nonlocal Hessian operator is derived from a second-order Taylor series expansion. NOM is higher-order continuous, which is exploited for thin plate analysis that requires $C^1$ continuity. The nonlocal dynamic governing formulation and operator energy functional for Kirchhoff plates are derived from a variational principle. The Verlet-velocity algorithm is used for time discretization. After confirming the accuracy of the nonlocal Hessian operator, several numerical examples are simulated by the nonlocal dynamic Kirchhoff plate formulation.
-A nonlocal fracture modeling is developed and applied to the simulation of quasi-static and dynamic fractures using the NOM. The phase field's nonlocal weak and associated strong forms are derived from a variational principle. The NOM requires only the definition of energy. We present both a nonlocal implicit phase field model and a nonlocal explicit phase field model for fracture; the first approach is better suited for quasi-static fracture problems, while the key application of the latter one is dynamic fracture. To demonstrate the performance of the underlying approach, several benchmark examples for quasi-static and dynamic fracture are solved.

2022,8

Finite Element Simulations of dynamically excited structures are mainly influenced by the mass, stiffness, and damping properties of the system, as well as external loads. The prediction quality of dynamic simulations of vibration-sensitive components depends significantly on the use of appropriate damping models. Damping phenomena have a decisive influence on the vibration amplitude and the frequencies of the vibrating structure. However, developing realistic damping models is challenging due to the multiple sources that cause energy dissipation, such as material damping, different types of friction, or various interactions with the environment.
This thesis focuses on thermoelastic damping, which is the main cause of material damping in homogeneous materials. The effect is caused by temperature changes due to mechanical strains. In vibrating structures, temperature gradients arise in adjacent tension and compression areas. Depending on the vibration frequency, they result in heat flows, leading to increased entropy and the irreversible transformation of mechanical energy into thermal energy.
The central objective of this thesis is the development of efficient simulation methods to incorporate thermoelastic damping in finite element analyses based on modal superposition. The thermoelastic loss factor is derived from the structure's mechanical mode shapes and eigenfrequencies. In subsequent analyses that are performed in the time and frequency domain, it is applied as modal damping.
Two approaches are developed to determine the thermoelastic loss in thin-walled plate structures, as well as three-dimensional solid structures. The realistic representation of the dissipation effects is verified by comparing the simulation results with experimentally determined data. Therefore, an experimental setup is developed to measure material damping, excluding other sources of energy dissipation.
The three-dimensional solid approach is based on the determination of the generated entropy and therefore the generated heat per vibration cycle, which is a measure for thermoelastic loss in relation to the total strain energy. For thin plate structures, the amount of bending energy in a modal deformation is calculated and summarized in the so-called Modal Bending Factor (MBF). The highest amount of thermoelastic loss occurs in the state of pure bending. Therefore, the MBF enables a quantitative classification of the mode shapes concerning the thermoelastic damping potential.
The results of the developed simulations are in good agreement with the experimental results and are appropriate to predict thermoelastic loss factors. Both approaches are based on modal superposition with the advantage of a high computational efficiency. Overall, the modeling of thermoelastic damping represents an important component in a comprehensive damping model, which is necessary to perform realistic simulations of vibration processes.

2022,6

In this thesis, a new approach is developed for applications of shape optimization on the time harmonic wave propagation (Helmholtz equation) for acoustic problems. This approach is introduced for different dimensional problems: 2D, 3D axi-symmetric and fully 3D problems. The boundary element method (BEM) is coupled with the isogeometric analysis (IGA) forming the so-called (IGABEM) which speeds up meshing and gives higher accuracy in comparison with standard BEM. BEM is superior for handling unbounded domains by modeling only the inner boundaries and avoiding the truncation error, present in the finite element method (FEM) since BEM solutions satisfy the Sommerfeld radiation condition automatically. Moreover, BEM reduces the space dimension by one from a volumetric three-dimensional problem to a surface two-dimensional problem, or from a surface two-dimensional problem to a perimeter one-dimensional problem. Non-uniform rational B-splines basis functions (NURBS) are used in an isogeometric setting to describe both the CAD geometries and the physical fields.
IGABEM is coupled with one of the gradient-free optimization methods, the Particle Swarm Optimization (PSO) for structural shape optimization problems. PSO is a straightforward method since it does not require any sensitivity analysis but it has some trade-offs with regard to the computational cost. Coupling IGA with optimization problems enables the NURBS basis functions to represent the three models: shape design, analysis and optimization models, by a definition of a set of control points to be the control variables and the optimization parameters as well which enables an easy transition between the three models.
Acoustic shape optimization for various frequencies in different mediums is performed with PSO and the results are compared with the benchmark solutions from the literature for different dimensional problems proving the efficiency of the proposed approach with the following remarks:
- In 2D problems, two BEM methods are used: the conventional isogeometric boundary element method (IGABEM) and the eXtended IGABEM (XIBEM) enriched with the partition-of-unity expansion using a set of plane waves, where the results are generally in good agreement with the linterature with some computation advantage to XIBEM which allows coarser meshes.
-In 3D axi-symmetric problems, the three-dimensional problem is simplified in BEM from a surface integral to a combination of two 1D integrals. The first is the line integral similar to a two-dimensional BEM problem. The second integral is performed over the angle of revolution. The discretization is applied only to the former integration. This leads to significant computational savings and, consequently, better treatment for higher frequencies over the full three-dimensional models.
- In fully 3D problems, a detailed comparison between two BEM methods: the conventional boundary integral equation (CBIE) and Burton-Miller (BM) is provided including the computational cost. The proposed models are enhanced with a modified collocation scheme with offsets to Greville abscissae to avoid placing collocation points at the corners. Placing collocation points on smooth surface enables accurate evaluation of normals for BM formulation in addition to straightforward prediction of jump-terms and avoids singularities in $\mathcal{O} (1/r)$ integrals eliminating the need for polar integration. Furthermore, no additional special treatment is required for the hyper-singular integral while collocating on highly distorted elements, such as those containing sphere poles. The obtained results indicate that, CBIE with PSO is a feasible alternative (except for a small number of fictitious frequencies) which is easier to implement. Furthermore, BM presents an outstanding treatment of the complicated geometry of mufflers with internal extended inlet/outlet tube as an interior 3D Helmholtz acoustic problem instead of using mixed or dual BEM.

2022,4

The Finite Element Method (FEM) is widely used in engineering for solving Partial Differential Equations (PDEs) over complex geometries. To this end, it is required to provide the FEM software with a geometric model that is typically constructed in a Computer-Aided Design (CAD) software. However, FEM and CAD use different approaches for the mathematical description of the geometry. Thus, it is required to generate a mesh, which is suitable for FEM, based on the CAD model. Nonetheless, this procedure is not a trivial task and it can be time consuming. This issue becomes more significant for solving shape and topology optimization problems, which consist in evolving the geometry iteratively. Therefore, the computational cost associated to the mesh generation process is increased exponentially for this type of applications.
The main goal of this work is to investigate the integration of CAD and CAE in shape and topology optimization. To this end, numerical tools that close the gap between design and analysis are presented. The specific objectives of this work are listed below:
• Automatize the sensitivity analysis in an isogeometric framework for applications in shape optimization. Applications for linear elasticity are considered.
• A methodology is developed for providing a direct link between the CAD model and the analysis mesh. In consequence, the sensitivity analysis can be performed in terms of the design variables located in the design model.
• The last objective is to develop an isogeometric method for shape and topological optimization. This method should take advantage of using Non-Uniform Rational B-Splines (NURBS) with higher continuity as basis functions.
Isogeometric Analysis (IGA) is a framework designed to integrate the design and analysis in engineering problems. The fundamental idea of IGA is to use the same basis functions for modeling the geometry, usually NURBS, for the approximation of the solution fields. The advantage of integrating design and analysis is two-fold. First, the analysis stage is more accurate since the system of PDEs is not solved using an approximated geometry, but the exact CAD model. Moreover, providing a direct link between the design and analysis discretizations makes possible the implementation of efficient sensitivity analysis methods. Second, the computational time is significantly reduced because the mesh generation process can be avoided.
Sensitivity analysis is essential for solving optimization problems when gradient-based optimization algorithms are employed. Automatic differentiation can compute exact gradients, automatically by tracking the algebraic operations performed on the design variables. For the automation of the sensitivity analysis, an isogeometric framework is used. Here, the analysis mesh is obtained after carrying out successive refinements, while retaining the coarse geometry for the domain design. An automatic differentiation (AD) toolbox is used to perform the sensitivity analysis. The AD toolbox takes the code for computing the objective and constraint functions as input. Then, using a source code transformation approach, it outputs a code for computing the objective and constraint functions, and their sensitivities as well. The sensitivities obtained from the sensitivity propagation method are compared with analytical sensitivities, which are computed using a full isogeometric approach.
The computational efficiency of AD is comparable to that of analytical sensitivities. However, the memory requirements are larger for AD. Therefore, AD is preferable if the memory requirements are satisfied. Automatic sensitivity analysis demonstrates its practicality since it simplifies the work of engineers and designers.
Complex geometries with sharp edges and/or holes cannot easily be described with NURBS. One solution is the use of unstructured meshes. Simplex-elements (triangles and tetrahedra for two and three dimensions respectively) are particularly useful since they can automatically parameterize a wide variety of domains. In this regard, unstructured Bézier elements, commonly used in CAD, can be employed for the exact modelling of CAD boundary representations. In two dimensions, the domain enclosed by NURBS curves is parameterized with Bézier triangles. To describe exactly the boundary of a two-dimensional CAD model, the continuity of a NURBS boundary representation is reduced to C^0. Then, the control points are used to generate a triangulation such that the boundary of the domain is identical to the initial CAD boundary representation. Thus, a direct link between the design and analysis discretizations is provided and the sensitivities can be propagated to the design domain.
In three dimensions, the initial CAD boundary representation is given as a collection of NURBS surfaces that enclose a volume. Using a mesh generator (Gmsh), a tetrahedral mesh is obtained. The original surface is reconstructed by modifying the location of the control points of the tetrahedral mesh using Bézier tetrahedral elements and a point inversion algorithm. This method offers the possibility of computing the sensitivity analysis using the analysis mesh. Then, the sensitivities can be propagated into the design discretization. To reuse the mesh originally generated, a moving Bézier tetrahedral mesh approach was implemented.
A gradient-based optimization algorithm is employed together with a sensitivity propagation procedure for the shape optimization cases. The proposed shape optimization approaches are used to solve some standard benchmark problems in structural mechanics. The results obtained show that the proposed approach can compute accurate gradients and evolve the geometry towards optimal solutions. In three dimensions, the moving mesh approach results in faster convergence in terms of computational time and avoids remeshing at each optimization step.
For considering topological changes in a CAD-based framework, an isogeometric phase-field based shape and topology optimization is developed. In this case, the diffuse interface of a phase-field variable over a design domain implicitly describes the boundaries of the geometry. The design variables are the local values of the phase-field variable. The descent direction to minimize the objective function is found by using the sensitivities of the objective function with respect to the design variables. The evolution of the phase-field is determined by solving the time dependent Allen-Cahn equation.
Especially for topology optimization problems that require C^1 continuity, such as for flexoelectric structures, the isogeometric phase field method is of great advantage. NURBS can achieve the desired continuity more efficiently than the traditional employed functions. The robustness of the method is demonstrated when applied to different geometries, boundary conditions, and material configurations. The applications illustrate that compared to piezoelectricity, the electrical performance of flexoelectric microbeams is larger under bending. In contrast, the electrical power for a structure under compression becomes larger with piezoelectricity.

2022,3

In recent years, lightweight materials, such as polymer composite materials (PNCs) have been studied and developed due to their excellent physical and chemical properties. Structures composed of these composite materials are widely used in aerospace engineering structures, automotive components, and electrical devices. The excellent and outstanding mechanical, thermal, and electrical properties of Carbon nanotube (CNT) make it an ideal filler to strengthen polymer materials’ comparable properties. The heat transfer of composite materials has very promising engineering applications in many fields, especially in electronic devices and energy storage equipment. It is essential in high-energy density systems since electronic components need heat dissipation functionality. Or in other words, in electronic devices the generated heat should ideally be dissipated by light and small heat sinks.
Polymeric composites consist of fillers embedded in a polymer matrix, the first ones will significantly affect the overall (macroscopic) performance of the material. There are many common carbon-based fillers such as single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), carbon nanobuds (CNB), fullerene, and graphene. Additives inside the matrix have become a popular subject for researchers. Some extraordinary characters, such as high-performance load, lightweight design, excellent chemical resistance, easy processing, and heat transfer, make the design of polymeric nanotube composites (PNCs) flexible. Due to the reinforcing effects with different fillers on composite materials, it has a higher degree of freedom and can be designed for the structure according to specific applications’ needs. As already stated, our research focus will be on SWCNT enhanced PNCs. Since experiments are timeconsuming, sometimes expensive and cannot shed light into phenomena taking place for instance at the interfaces/interphases of composites, they are often complemented through theoretical and computational analysis.
While most studies are based on deterministic approaches, there is a comparatively lower number of stochastic methods accounting for uncertainties in the input parameters. In deterministic models, the output of the model is fully determined by the parameter values and the initial conditions. However, uncertainties in the input parameters such as aspect ratio, volume fraction, thermal properties of fiber and matrix need to be taken into account for reliable predictions. In this research, a stochastic multiscale method is provided to study the influence of numerous uncertain input parameters on the thermal conductivity of the composite. Therefore, a hierarchical multi-scale method based on computational homogenization is presented in to predict the macroscopic thermal conductivity based on the fine-scale structure. In order to study the inner mechanism, we use the finite element method and employ surrogate models to conduct a Global Sensitivity Analysis (GSA). The SA is performed in order to quantify the influence of the conductivity of the fiber, matrix, Kapitza resistance, volume fraction and aspect ratio on the macroscopic conductivity. Therefore, we compute first-order and total-effect sensitivity indices with different surrogate models.
As stochastic multiscale models are computational expensive, surrogate approaches are commonly exploited. With the emergence of high performance computing and artificial intelligence, machine learning has become a popular modeling tool for numerous applications. Machine learning (ML) is commonly used in regression and maps data through specific rules with algorithms to build input and output models. They are particularly useful for nonlinear input-output relationships when sufficient data is available. ML has also been used in the design of new materials and multiscale analysis. For instance, Artificial neural networks and integrated learning seem to be ideally for such a task. They can theoretically simulate any non-linear relationship through the connection of neurons. Mapping relationships are employed to carry out data-driven simulations of inputs and outputs in stochastic modeling.
This research aims to develop a stochastic multi-scale computational models of PNCs in heat transfer. Multi-scale stochastic modeling with uncertainty analysis and machine learning methods consist of the following components:
-Uncertainty Analysis. A surrogate based global sensitivity analysis is coupled with a hierarchical multi-scale method employing computational homogenization. The effect of the conductivity of the fibers and the matrix, the Kapitza resistance, volume fraction and aspect ratio on the ’macroscopic’ conductivity of the composite is systematically studied. All selected surrogate models yield consistently the conclusions that the most influential input parameters are the aspect ratio followed by the volume fraction. The Kapitza Resistance has no significant effect on the thermal conductivity of the PNCs. The most accurate surrogate model in terms of the R2 value is the moving least square (MLS).
-Hybrid Machine Learning Algorithms. A combination of artificial neural network (ANN) and particle swarm optimization (PSO) is applied to estimate the relationship between variable input and output parameters. The ANN is used for modeling the composite while PSO improves the prediction performance through an optimized global minimum search. The thermal conductivity of the fibers and the matrix, the kapitza resistance, volume fraction and aspect ratio are selected as input parameters. The output is the macroscopic (homogenized) thermal conductivity of the composite. The results show that the PSO significantly improves the predictive ability of this hybrid intelligent algorithm, which outperforms traditional neural networks.
-Stochastic Integrated Machine Learning. A stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in PNCs is developed. Seven types of machine learning models are exploited in this research, namely Multivariate Adaptive Regression Splines (MARS), Support Vector Machine (SVM), Regression Tree (RT), Bagging Tree (Bag), Random Forest (RF), Gradient Boosting Machine (GBM) and Cubist. They are used as components of stochastic modeling to construct the relationship between the variable of the inputs’ uncertainty and the macroscopic thermal conductivity of PNCs. Particle Swarm Optimization (PSO) is used for hyper-parameter tuning to find the global optimal values leading to a significant reduction in the computational cost. The advantages and disadvantages of various methods are also analyzed in terms of computing time and model complexity to finally give a recommendation for the applicability of different models.

2022,2

The detailed structural analysis of thin-walled circular pipe members often requires the use of a shell or solid-based finite element method. Although these methods provide a very good approximation of the deformations, they require a higher degree of discretization which causes high computational costs. On the other hand, the analysis of thin-walled circular pipe members based on classical beam theories is easy to implement and needs much less computation time, however, they are limited in their ability to approximate the deformations as they cannot consider the deformation of the cross-section.
This dissertation focuses on the study of the Generalized Beam Theory (GBT) which is both accurate and efficient in analyzing thin-walled members. This theory is based on the separation of variables in which the displacement field is expressed as a combination of predetermined deformation modes related to the cross-section, and unknown amplitude functions defined on the beam's longitudinal axis. Although the GBT was initially developed for long straight members, through the consideration of complementary deformation modes, which amend the null transverse and shear membrane strain assumptions of the classical GBT, problems involving short members, pipe bends, and geometrical nonlinearity can also be analyzed using GBT. In this dissertation, the GBT formulation for the analysis of these problems is developed and the application and capabilities of the method are illustrated using several numerical examples. Furthermore, the displacement and stress field results of these examples are verified using an equivalent refined shell-based finite element model.
The developed static and dynamic GBT formulations for curved thin-walled circular pipes are based on the linear kinematic description of the curved shell theory. In these formulations, the complex problem in pipe bends due to the strong coupling effect of the longitudinal bending, warping and the cross-sectional ovalization is handled precisely through the derivation of the coupling tensors between the considered GBT deformation modes. Similarly, the geometrically nonlinear GBT analysis is formulated for thin-walled circular pipes based on the nonlinear membrane kinematic equations. Here, the initial linear and quadratic stress and displacement tangent stiffness matrices are built using the third and fourth-order GBT deformation mode coupling tensors.
Longitudinally, the formulation of the coupled GBT element stiffness and mass matrices are presented using a beam-based finite element formulation. Furthermore, the formulated GBT elements are tested for shear and membrane locking problems and the limitations of the formulations regarding the membrane locking problem are discussed.

2022,1

Isogeometric analysis (IGA) is a numerical method for solving partial differential equations (PDEs), which was introduced with the aim of integrating finite element analysis with computer-aided design systems. The main idea of the method is to use the same spline basis functions which describe the geometry in CAD systems for the approximation of solution fields in the finite element method (FEM). Originally, NURBS which is a standard technology employed in CAD systems was adopted as basis functions in IGA but there were several variants of IGA using other technologies such as T-splines, PHT splines, and subdivision surfaces as basis functions. In general, IGA offers two key advantages over classical FEM: (i) by describing the CAD geometry exactly using smooth, high-order spline functions, the mesh generation process is simplified and the interoperability between CAD and FEM is improved, (ii) IGA can be viewed as a high-order finite element method which offers basis functions with high inter-element continuity and therefore can provide a primal variational formulation of high-order PDEs in a straightforward fashion. The main goal of this thesis is to further advance isogeometric analysis by exploiting these major advantages, namely precise geometric modeling and the use of smooth high-order splines as basis functions, and develop robust computational methods for problems with complex geometry and/or complex multi-physics.
As the first contribution of this thesis, we leverage the precise geometric modeling of isogeometric analysis and propose a new method for its coupling with meshfree discretizations. We exploit the strengths of both methods by using IGA to provide a smooth, geometrically-exact surface discretization of the problem domain boundary, while the Reproducing Kernel Particle Method (RKPM) discretization is used to provide the volumetric discretization of the domain interior. The coupling strategy is based upon the higher-order consistency or reproducing conditions that are directly imposed in the physical domain. The resulting coupled method enjoys several favorable features: (i) it preserves the geometric exactness of IGA, (ii) it circumvents the need for global volumetric parameterization of the problem domain, (iii) it achieves arbitrary-order approximation accuracy while preserving higher-order smoothness of the discretization. Several numerical examples are solved to show the optimal convergence properties of the coupled IGA–RKPM formulation, and to demonstrate its effectiveness in constructing volumetric discretizations for complex-geometry objects.
As for the next contribution, we exploit the use of smooth, high-order spline basis functions in IGA to solve high-order surface PDEs governing the morphological evolution of vesicles. These governing equations are often consisted of geometric PDEs, high-order PDEs on stationary or evolving surfaces, or a combination of them. We propose an isogeometric formulation for solving these PDEs. In the context of geometric PDEs, we consider phase-field approximations of mean curvature flow and Willmore flow problems and numerically study the convergence behavior of isogeometric analysis for these problems. As a model problem for high-order PDEs on stationary surfaces, we consider the Cahn–Hilliard equation on a sphere, where the surface is modeled using a phase-field approach. As for the high-order PDEs on evolving surfaces, a phase-field model of a deforming multi-component vesicle, which consists of two fourth-order nonlinear PDEs, is solved using the isogeometric analysis in a primal variational framework. Through several numerical examples in 2D, 3D and axisymmetric 3D settings, we show the robustness of IGA for solving the considered phase-field models.
Finally, we present a monolithic, implicit formulation based on isogeometric analysis and generalized-alpha time integration for simulating hydrodynamics of vesicles according to a phase-field model. Compared to earlier works, the number of equations of the phase-field model which need to be solved is reduced by leveraging high continuity of NURBS functions, and the algorithm is extended to 3D settings. We use residual-based variational multi-scale method (RBVMS) for solving Navier–Stokes equations, while the rest of PDEs in the phase-field model are treated using a standard Galerkin-based IGA. We introduce the resistive immersed surface (RIS) method into the formulation which can be employed for an implicit description of complex geometries using a diffuse-interface approach. The implementation highlights the robustness of the RBVMS method for Navier–Stokes equations of incompressible flows with non-trivial localized forcing terms including bending and tension forces of the vesicle. The potential of the phase-field model and isogeometric analysis for accurate simulation of a variety of fluid-vesicle interaction problems in 2D and 3D is demonstrated.