## ISM-Bericht // Institut für Strukturmechanik, Bauhaus-Universität Weimar

### Refine

#### Institute

#### Keywords

- Bayes (1)
- Bayesian method (1)
- Beton (1)
- Bruch (1)
- Dissertation (1)
- Finite-Elemente-Methode (1)
- Fracture mechanics (1)
- Konjugierte-Gradienten-Methode (1)
- Mehrgitterverfahren (1)
- Nanomechanical Resonators (1)

#### Year of publication

- 2018 (6) (remove)

2018,7

Matrix-free voxel-based finite element method for materials with heterogeneous microstructures
(2018)

Modern image detection techniques such as micro computer tomography
(μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis.
However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm.
This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained.

2018,6

Identification of flaws in structures is a critical element in the management of maintenance and quality assurance processes in engineering. Nondestructive testing (NDT) techniques based on a wide range of physical principles have been developed and are used in common practice for structural health monitoring. However, basic NDT techniques are usually limited in their ability to provide the accurate information on locations, dimensions and shapes of flaws. One alternative to extract additional information from the results of NDT is to append it with a computational model that provides detailed analysis of the physical process involved and enables the accurate identification of the flaw parameters. The aim here is to develop the strategies to uniquely identify cracks in two-dimensional 2D) structures under dynamic loadings.
A local NDT technique combined eXtended Finite Element Method (XFEM) with dynamic loading in order to identify the cracks in the structures quickly and accurately is developed in this dissertation. The Newmark-b time integration method with Rayleigh damping is used for the time integration. We apply Nelder-Mead (NM)and Quasi-Newton (QN) methods for identifying the crack tip in plate. The inverse problem is solved iteratively, in which XFEM is used for solving the forward problem in each iteration. For a timeharmonic excitation with a single frequency and a short-duration signal measured along part of the external boundary, the crack is detected through the solution of an inverse time-dependent problem. Compared to the static load, we show that the dynamic loads are more effective for crack detection problems. Moreover, we tested different dynamic loads and find that NM method works more efficient under the harmonic load than the pounding load while the QN method achieves almost the same results for both load types.
A global strategy, Multilevel Coordinate Search (MCS) with XFEM (XFEM-MCS) methodology under the dynamic electric load, to detect multiple cracks in 2D piezoelectric plates is proposed in this dissertation. The Newmark-b method is employed for the time integration and in each iteration the forward problem is solved by XFEM for various cracks. The objective functional is minimized by using a global search algorithm MCS. The test problems show that the XFEM-MCS algorithm under the dynamic electric load can be effectively employed for multiple cracks detection in piezoelectric materials, and it proves to be robust in identifying defects in piezoelectric structures. Fiber-reinforced composites (FRCs) are extensively applied in practical engineering since they have high stiffness and strength. Experiments reveal a so-called interphase zone, i.e. the space between the outside interface of the fiber and the inside interface of the matrix. The interphase strength between the fiber and the matrix strongly affects the mechanical properties as a result of the large ratio of interface/volume. For the purpose of understanding the mechanical properties of FRCs with functionally graded interphase (FGI), a closed-form expression of the interface strength between a fiber and a matrix is obtained in this dissertation using a continuum modeling approach according to the ver derWaals (vdW) forces. Based on the interatomic potential, we develop a new modified nonlinear cohesive law, which is applied to study the interface delamination of FRCs with FGI under different loadings. The analytical solutions show that the delamination behavior strongly depends on the interphase thickness, the fiber radius, the Young’s moduli and Poisson’s ratios of the fiber and the matrix. Thermal conductivity is the property of a material to conduct heat. With the development and deep research of 2D materials, especially graphene and molybdenum disulfide (MoS2), the thermal conductivity of 2D materials attracts wide attentions. The thermal conductivity of graphene nanoribbons (GNRs) is found to appear a tendency of decreasing under tensile strain by classical molecular dynamics (MD) simulations. Hence, the strain effects of graphene can play a key role in the continuous tunability and applicability of its thermal conductivity property at nanoscale, and the dissipation of thermal conductivity is an obstacle for the applications of thermal management. Up to now, the thermal conductivity of graphene under shear deformation has not been investigated yet. From a practical point of view, good thermal managements of GNRs have significantly potential applications of future GNR-based thermal nanodevices, which can greatly improve performances of the nanosized devices due to heat dissipations. Meanwhile, graphene is a thin membrane structure, it is also important to understand the wrinkling behavior under shear deformation. MoS2 exists in the stable semiconducting 1H phase (1H-MoS2) while the metallic 1T phase (1T-MoS2) is unstable at ambient conditions. As it’s well known that much attention has been focused on studying the nonlinear optical properties of the 1H-MoS2. In a very recent research, the 1T-type monolayer crystals of TMDCs, MX2 (MoS2, WS2 ...) was reported having an intrinsic in-plane negative Poisson’s ratio. Luckily, nearly at the same time, unprecedented long-term (>3months) air stability of the 1T-MoS2 can be achieved by using the donor lithium hydride (LiH). Therefore, it’s very important to study the thermal conductivity of 1T-MoS2.
The thermal conductivity of graphene under shear strain is systematically studied in this dissertation by MD simulations. The results show that, in contrast to the dramatic decrease of thermal conductivity of graphene under uniaxial tensile, the thermal conductivity of graphene is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16%. The wrinkle evolves when the shear strain is around 5%-10%, but the thermal conductivity barely changes.
The thermal conductivities of single-layer 1H-MoS2(1H-SLMoS2) and single-layer 1T-MoS2 (1T-SLMoS2) with different sample sizes, temperatures and strain rates have been studied systematically in this dissertation. We find that the thermal conductivities of 1H-SLMoS2 and 1T-SLMoS2 in both the armchair and the zigzag directions increase with the increasing of the sample length, while the increase of the width of the sample has minor effect on the thermal conductions of these two structures. The thermal conductivity of 1HSLMoS2 is smaller than that of 1T-SLMoS2 under size effect. Furthermore, the temperature effect results show that the thermal conductivities of both 1H-SLMoS2 and 1T-SLMoS2 decrease with the increasing of the temperature. The thermal conductivities of 1HSLMoS2 and 1T-SLMoS2 are nearly the same (difference <6%) in both of the chiral orientations under corresponding temperatures, especially in the armchair direction (difference <2.8%). Moreover, we find that the strain effects on the thermal conductivity of 1HSLMoS2 and 1T-SLMoS2 are different. More specifically, the thermal conductivity decreases with the increasing tensile strain rate for
1T-SLMoS2, while fluctuates with the growth of the strain for 1HSLMoS2. Finally, we find that the thermal conductivity of same sized 1H-SLMoS2 is similar with that of the strained 1H-SLMoS2 structure.

2018,5

This dissertation is devoted to the theoretical development and experimental laboratory verification of a new damage localization method: The state projection estimation error (SP2E). This method is based on the subspace identification of mechanical structures, Krein space based H-infinity estimation and oblique projections. To explain method SP2E, several theories are discussed and laboratory experiments have been conducted and analysed.
A fundamental approach of structural dynamics is outlined first by explaining mechanical systems based on first principles. Following that, a fundamentally different approach, subspace identification, is comprehensively explained. While both theories, first principle and subspace identification based mechanical systems, may be seen as widespread methods, barely known and new techniques follow up. Therefore, the indefinite quadratic estimation theory is explained. Based on a Popov function approach, this leads to the Krein space based H-infinity theory. Subsequently, a new method for damage identification, namely SP2E, is proposed. Here, the introduction of a difference process, the analysis by its average process power and the application of oblique projections is discussed in depth.
Finally, the new method is verified in laboratory experiments. Therefore, the identification of a laboratory structure at Leipzig University of Applied Sciences is elaborated. Then structural alterations are experimentally applied, which were localized by SP2E afterwards. In the end four experimental sensitivity studies are shown and discussed. For each measurement series the structural alteration was increased, which was successfully tracked by SP2E. The experimental results are plausible and in accordance with the developed theories. By repeating these experiments, the applicability of SP2E for damage localization is experimentally proven.

2018,4

Polymeric nanocomposites (PNCs) are considered for numerous nanotechnology such as: nano-biotechnology, nano-systems, nanoelectronics, and nano-structured materials. Commonly , they are formed by polymer (epoxy) matrix reinforced with a nanosized filler. The addition of rigid nanofillers to the epoxy matrix has offered great improvements in the fracture toughness without sacrificing other important thermo-mechanical properties. The physics of the fracture in PNCs is rather complicated and is influenced by different parameters. The presence of uncertainty in the predicted output is expected as a result of stochastic variance in the factors affecting the fracture mechanism. Consequently, evaluating the improved fracture toughness in PNCs is a challenging problem.
Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have been employed to predict the fracture energy of polymer/particle nanocomposites. The ANN and ANFIS models were constructed, trained, and tested based on a collection of 115 experimental datasets gathered from the literature. The performance evaluation indices of the developed ANN and ANFIS showed relatively small error, with high coefficients of determination (R2), and low root mean square error and mean absolute percentage error.
In the framework for uncertainty quantification of PNCs, a sensitivity analysis (SA) has been conducted to examine the influence of uncertain input parameters on the fracture toughness of polymer/clay nanocomposites (PNCs). The phase-field approach is employed to predict the macroscopic properties of the composite considering six uncertain input parameters. The efficiency, robustness, and repeatability are compared and evaluated comprehensively for five different SA methods.
The Bayesian method is applied to develop a methodology in order to evaluate the performance of different analytical models used in predicting the fracture toughness of polymeric particles nanocomposites. The developed method have considered the model and parameters uncertainties based on different reference data (experimental measurements) gained from the literature. Three analytical models differing in theory and assumptions were examined. The coefficients of variation of the model predictions to the measurements are calculated using the approximated optimal parameter sets. Then, the model selection probability is obtained with respect to the different reference data.
Stochastic finite element modeling is implemented to predict the fracture toughness of polymer/particle nanocomposites. For this purpose, 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone is generated. The crack propagation is simulated by the cohesive segments method and phantom nodes. Considering the uncertainties in the input parameters, a polynomial chaos expansion (PCE) surrogate model is construed followed by a sensitivity analysis.

2018,3

Advances in nanotechnology lead to the development of nano-electro-mechanical systems (NEMS) such as nanomechanical resonators with ultra-high resonant frequencies. The ultra-high-frequency resonators have recently received significant attention for wide-ranging applications such as molecular separation, molecular transportation, ultra-high sensitive sensing, high-frequency signal processing, and biological imaging. It is well known that for micrometer length scale, first-principles technique, the most accurate approach, poses serious limitations for comparisons with experimental studies. For such larger size, classical molecular dynamics (MD) simulations are desirable, which require interatomic potentials. Additionally, a mesoscale method such as the coarse-grained (CG) method is another useful method to support simulations for even larger system sizes.
Furthermore, quasi-two-dimensional (Q2D) materials have attracted intensive research interest due to their many novel properties over the past decades. However, the energy dissipation mechanisms of nanomechanical resonators based on several Q2D materials are still unknown. In this work, the addressed main issues include the development of the CG models for molybdenum disulphide (MoS2), investigation of the mechanism effects on black phosphorus (BP) nanoresonators and the application of graphene nanoresonators. The primary coverage and results of the dissertation are as follows:
Method development. Firstly, a two-dimensional (2D) CG model for single layer MoS2 (SLMoS2) is analytically developed. The Stillinger-Weber (SW) potential for this 2D CG model is further parametrized, in which all SW geometrical parameters are determined analytically according to the equilibrium condition for each individual potential term, while the SW energy parameters are derived analytically based on the valence force field model. Next, the 2D CG model is further simplified to one-dimensional (1D) CG model, which describes the 2D SLMoS2 structure using a 1D chain model. This 1D CG model is applied to investigate the relaxed configuration and the resonant oscillation of the folded SLMoS2. Owning to the simplicity nature of the 1D CG model, the relaxed configuration of the folded SLMoS2 is determined analytically, and the resonant oscillation frequency is derived analytically. Considering the increasing interest in studying the properties of other 2D layered materials, and in particular those in the semiconducting transition metal dichalcogenide class like MoS2, the CG models proposed in current work provide valuable simulation approaches.
Mechanism understanding. Two energy dissipation mechanisms of BP nanoresonators are focused exclusively, i.e. mechanical strain effects and defect effects (including vacancy and oxidation). Vacancy defect is intrinsic damping factor for the quality (Q)-factor, while mechanical strain and oxidation are extrinsic damping factors. Intrinsic dissipation (induced by thermal vibrations) in BP resonators (BPRs) is firstly investigated. Specifically, classical MD simulations are performed to examine the temperature dependence for the Q-factor of the single layer BPR (SLBPR) along the armchair and zigzag directions, where two-step fitting procedure is used to extract the frequency and Q-factor from the kinetic energy time history. The Q-factors of BPRs are evaluated through comparison with those of graphene and MoS2 nanoresonators. Next, effects of mechanical strain, vacancy and oxidation on BP nanoresonators are investigated in turn. Considering the increasing interest in studying the properties of BP, and in particular the lack of theoretical study for the BPRs, the results in current work provide a useful reference.
Application. A novel application for graphene nanoresonators, using them to self-assemble small nanostructures such as water chains, is proposed. All of the underlying physics enabling this phenomenon is elucidated. In particular, by drawing inspiration from macroscale self-assembly using the higher order resonant modes of Chladni plates, classical MD simulations are used to investigate the self-assembly of water molecules using
graphene nanoresonators. An analytic formula for the critical resonant frequency based on the interaction between water molecules and graphene is provided. Furthermore, the properties of the water chains assembled by the graphene nanoresonators are studied.

2018,2

Increasing structural robustness is the goal which is of interest for structural engineering community. The partial collapse of RC buildings is subject of this dissertation. Understanding the robustness of RC buildings will guide the development of safer structures against abnormal loading scenarios such as; explosions, earthquakes, fine, and/or long-term accumulation effects leading to deterioration or fatigue. Any of these may result in local immediate structural damage, that can propagate to the rest of the structure causing what is known by the disproportionate collapse.
This work handels collapse propagation through various analytical approaches which simplifies the mechanical description of damaged reinfoced concrete structures due to extreme acidental event.