Multi-Scale Modeling of Mechanical and Electrochemical Properties of 1D and 2D Nanomaterials, Application in Battery Energy Storage Systems

  • Material properties play a critical role in durable products manufacturing. Estimation of the precise characteristics in different scales requires complex and expensive experimental measurements. Potentially, computational methods can provide a platform to determine the fundamental properties before the final experiment. Multi-scale computational modeling leads to the modeling of the various time,Material properties play a critical role in durable products manufacturing. Estimation of the precise characteristics in different scales requires complex and expensive experimental measurements. Potentially, computational methods can provide a platform to determine the fundamental properties before the final experiment. Multi-scale computational modeling leads to the modeling of the various time, and length scales include nano, micro, meso, and macro scales. These scales can be modeled separately or in correlation with coarser scales. Depend on the interested scales modeling, the right selection of multi-scale methods leads to reliable results and affordable computational cost. The present dissertation deals with the problems in various length and time scales using computational methods include density functional theory (DFT), molecular mechanics (MM), molecular dynamics (MD), and finite element (FE) methods. Physical and chemical interactions in lower scales determine the coarser scale properties. Particles interaction modeling and exploring fundamental properties are significant challenges of computational science. Downscale modelings need more computational effort due to a large number of interacted atoms/particles. To deal with this problem and bring up a fine-scale (nano) as a coarse-scale (macro) problem, we extended an atomic-continuum framework. The discrete atomic models solve as a continuum problem using the computationally efficient FE method. MM or force field method based on a set of assumptions approximates a solution on the atomic scale. In this method, atoms and bonds model as a harmonic oscillator with a system of mass and springs. The negative gradient of the potential energy equal to the forces on each atom. In this way, each bond's total potential energy includes bonded, and non-bonded energies are simulated as equivalent structural strain energies. Finally, the chemical nature of the atomic bond is modeled as a piezoelectric beam element that solves by the FE method. Exploring novel materials with unique properties is a demand for various industrial applications. During the last decade, many two-dimensional (2D) materials have been synthesized and shown outstanding properties. Investigation of the probable defects during the formation/fabrication process and studying their strength under severe service life are the critical tasks to explore performance prospects. We studied various defects include nano crack, notch, and point vacancy (Stone-Wales defect) defects employing MD analysis. Classical MD has been used to simulate a considerable amount of molecules at micro-, and meso- scales. Pristine and defective nanosheet structures considered under the uniaxial tensile loading at various temperatures using open-source LAMMPS codes. The results were visualized with the open-source software of OVITO and VMD. Quantum based first principle calculations have been conducting at electronic scales and known as the most accurate Ab initio methods. However, they are computationally expensive to apply for large systems. We used density functional theory (DFT) to estimate the mechanical and electrochemical response of the 2D materials. Many-body Schrödinger's equation describes the motion and interactions of the solid-state particles. Solid describes as a system of positive nuclei and negative electrons, all electromagnetically interacting with each other, where the wave function theory describes the quantum state of the set of particles. However, dealing with the 3N coordinates of the electrons, nuclei, and N coordinates of the electrons spin components makes the governing equation unsolvable for just a few interacted atoms. Some assumptions and theories like Born Oppenheimer and Hartree-Fock mean-field and Hohenberg-Kohn theories are needed to treat with this equation. First, Born Oppenheimer approximation reduces it to the only electronic coordinates. Then Kohn and Sham, based on Hartree-Fock and Hohenberg-Kohn theories, assumed an equivalent fictitious non-interacting electrons system as an electron density functional such that their ground state energies are equal to a set of interacting electrons. Exchange-correlation energy functionals are responsible for satisfying the equivalency between both systems. The exact form of the exchange-correlation functional is not known. However, there are widely used methods to derive functionals like local density approximation (LDA), Generalized gradient approximation (GGA), and hybrid functionals (e.g., B3LYP). In our study, DFT performed using VASP codes within the GGA/PBE approximation, and visualization/post-processing of the results realized via open-source software of VESTA. The extensive DFT calculations are conducted 2D nanomaterials prospects as anode/cathode electrode materials for batteries. Metal-ion batteries' performance strongly depends on the design of novel electrode material. Two-dimensional (2D) materials have developed a remarkable interest in using as an electrode in battery cells due to their excellent properties. Desirable battery energy storage systems (BESS) must satisfy the high energy density, safe operation, and efficient production costs. Batteries have been using in electronic devices and provide a solution to the environmental issues and store the discontinuous energies generated from renewable wind or solar power plants. Therefore, exploring optimal electrode materials can improve storage capacity and charging/discharging rates, leading to the design of advanced batteries. Our results in multiple scales highlight not only the proposed and employed methods' efficiencies but also promising prospect of recently synthesized nanomaterials and their applications as an anode material. In this way, first, a novel approach developed for the modeling of the 1D nanotube as a continuum piezoelectric beam element. The results converged and matched closely with those from experiments and other more complex models. Then mechanical properties of nanosheets estimated and the failure mechanisms results provide a useful guide for further use in prospect applications. Our results indicated a comprehensive and useful vision concerning the mechanical properties of nanosheets with/without defects. Finally, mechanical and electrochemical properties of the several 2D nanomaterials are explored for the first time—their application performance as an anode material illustrates high potentials in manufacturing super-stretchable and ultrahigh-capacity battery energy storage systems (BESS). Our results exhibited better performance in comparison to the available commercial anode moreshow less

Download full text files

Export metadata

Document Type:Doctoral Thesis
Author:Dr. -Ing Mohammad Salavati
DOI (Cite-Link):
URN (Cite-Link):
Referee:Prof. Dr. rer. nat. Tom LahmerORCiDGND, Prof. Dr. Pedro Miguel Almeida Areias, Prof. Dr. rer. nat. habil. Klaus GürlebeckGND, Prof. Dr. Mark F. JentschORCiD, Dr.-Ing. habil. Volkmar ZabelORCiDGND
Advisor:Prof. Dr. -Ing Timon RabczukORCiDGND
Date of Publication (online):2020/06/22
Date of first Publication:2020/06/22
Date of final exam:2020/06/12
Release Date:2020/06/23
Publishing Institution:Bauhaus-Universität Weimar
Granting Institution:Bauhaus-Universität Weimar, Fakultät Bauingenieurwesen
Institutes and partner institutions:Fakultät Bauingenieurwesen / Institut für Strukturmechanik (ISM)
Tag:Elektrodenmaterial; Energiespeichersystem
Battery development; Electrochemical properties; Mechanical properties; Multi-scale modeling; Nanomaterial
GND Keyword:Batterie; Modellierung; Nanostrukturiertes Material; Elektrode; Mechanische Eigenschaft; Elektrochemische Eigenschaft
Dewey Decimal Classification:500 Naturwissenschaften und Mathematik
600 Technik, Medizin, angewandte Wissenschaften
BKL-Classification:33 Physik
35 Chemie
52 Maschinenbau, Energietechnik, Fertigungstechnik
58 Chemische Technik, Umwelttechnik, verschiedene Techno-
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen (CC BY-NC-SA 4.0)