• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ
  • BKL-Classification
  • 31 Mathematik

31.80 Angewandte Mathematik

Refine

Has Fulltext

  • yes (437)
  • no (293)

Document Type

  • Conference Proceeding (470)
  • Article (254)
  • Master's Thesis (3)
  • Doctoral Thesis (2)
  • Bachelor Thesis (1)

Author

  • Rabczuk, Timon (121)
  • Bucher, Christian (52)
  • Lahmer, Tom (51)
  • Könke, Carsten (44)
  • Zabel, Volkmar (40)
  • Most, Thomas (35)
  • Brehm, Maik (29)
  • Bordas, Stéphane Pierre Alain (25)
  • Vormwald, M. (21)
  • Nguyen-Xuan, Hung (20)
+ more

Institute

  • Institut für Strukturmechanik (306)
  • Professur Informatik im Bauwesen (282)
  • In Zusammenarbeit mit der Bauhaus-Universität Weimar (82)
  • Juniorprofessur Stochastik und Optimierung (43)
  • Graduiertenkolleg 1462 (32)
  • Professur Angewandte Mathematik (17)
  • Institut für Konstruktiven Ingenieurbau (4)
  • Bauhaus-Institut für zukunftsweisende Infrastruktursysteme (2)
  • Institut für Mathematik-Bauphysik (2)
  • Professur Baubetrieb und Bauverfahren (2)
+ more

Keywords

  • Angewandte Mathematik (439)
  • Strukturmechanik (293)
  • Computerunterstütztes Verfahren (154)
  • Angewandte Informatik (147)
  • Architektur <Informatik> (76)
  • Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (74)
  • Modellierung (43)
  • Stochastik (41)
  • Building Information Modeling (35)
  • CAD (35)
+ more

Year of publication

  • 2003 (135)
  • 1997 (102)
  • 2010 (88)
  • 2015 (65)
  • 2000 (64)
  • 2012 (49)
  • 2014 (38)
  • 2013 (29)
  • 2006 (22)
  • 2005 (19)
+ more

730 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Implicit implementation of the nonlocal operator method: an open source code (2022)
Zhang, Yongzheng ; Ren, Huilong
In this paper, we present an open-source code for the first-order and higher-order nonlocal operator method (NOM) including a detailed description of the implementation. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combined with the method of weighed residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. The implementation in this paper is focused on linear elastic solids for sake of conciseness through the NOM can handle more complex nonlinear problems. The NOM can be very flexible and efficient to solve partial differential equations (PDEs), it’s also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Finally, we present some classical benchmark problems including the classical cantilever beam and plate-with-a-hole problem, and we also make an extension of this method to solve complicated problems including phase-field fracture modeling and gradient elasticity material.
Nonlocal dynamic Kirchhoff plate formulation based on nonlocal operator method (2022)
Zhang, Yongzheng
In this study, we propose a nonlocal operator method (NOM) for the dynamic analysis of (thin) Kirchhoff plates. The nonlocal Hessian operator is derived based on a second-order Taylor series expansion. The NOM does not require any shape functions and associated derivatives as ’classical’ approaches such as FEM, drastically facilitating the implementation. Furthermore, NOM is higher order continuous, which is exploited for thin plate analysis that requires C1 continuity. The nonlocal dynamic governing formulation and operator energy functional for Kirchhoff plates are derived from a variational principle. The Verlet-velocity algorithm is used for the time discretization. After confirming the accuracy of the nonlocal Hessian operator, several numerical examples are simulated by the nonlocal dynamic Kirchhoff plate formulation.
Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media (2022)
Rabczuk, Timon ; Guo, Hongwei ; Zhuang, Xiaoying ; Chen, Pengwan ; Alajlan, Naif
We present a stochastic deep collocation method (DCM) based on neural architecture search (NAS) and transfer learning for heterogeneous porous media. We first carry out a sensitivity analysis to determine the key hyper-parameters of the network to reduce the search space and subsequently employ hyper-parameter optimization to finally obtain the parameter values. The presented NAS based DCM also saves the weights and biases of the most favorable architectures, which is then used in the fine-tuning process. We also employ transfer learning techniques to drastically reduce the computational cost. The presented DCM is then applied to the stochastic analysis of heterogeneous porous material. Therefore, a three dimensional stochastic flow model is built providing a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers. The performance of the presented NAS based DCM is verified in different dimensions using the method of manufactured solutions. We show that it significantly outperforms finite difference methods in both accuracy and computational cost.
Estimates for the discrete fundamental solution of the discrete Laplace operator on a rectangular lattice (2021)
Legatiuk, Anastasiia ; Gürlebeck, Klaus ; Hommel, Angela
This paper presents numerical analysis of the discrete fundamental solution of the discrete Laplace operator on a rectangular lattice. Additionally, to provide estimates in interior and exterior domains, two different regularisations of the discrete fundamental solution are considered. Estimates for the absolute difference and lp-estimates are constructed for both regularisations. Thus, this work extends the classical results in the discrete potential theory to the case of a rectangular lattice and serves as a basis for future convergence analysis of the method of discrete potentials on rectangular lattices.
Efficient domain decomposition based reliability analysis for polymorphic uncertain material parameters (2021)
Schmidt, Albrecht ; Lahmer, Tom
Realistic uncertainty description incorporating aleatoric and epistemic uncertainties can be described within the framework of polymorphic uncertainty, which is computationally demanding. Utilizing a domain decomposition approach for random field based uncertainty models the proposed level-based sampling method can reduce these computational costs significantly and shows good agreement with a standard sampling technique. While 2-level configurations tend to get unstable with decreasing sampling density 3-level setups show encouraging results for the investigated reliability analysis of a structural unit square.
Combined approach for optimal sensor placement and experimental verification in the context of tower-like structures (2020)
Reichert, Ina ; Olney, Peter ; Lahmer, Tom
When it comes to monitoring of huge structures, main issues are limited time, high costs and how to deal with the big amount of data. In order to reduce and manage them, respectively, methods from the field of optimal design of experiments are useful and supportive. Having optimal experimental designs at hand before conducting any measurements is leading to a highly informative measurement concept, where the sensor positions are optimized according to minimal errors in the structures’ models. For the reduction of computational time a combined approach using Fisher Information Matrix and mean-squared error in a two-step procedure is proposed under the consideration of different error types. The error descriptions contain random/aleatoric and systematic/epistemic portions. Applying this combined approach on a finite element model using artificial acceleration time measurement data with artificially added errors leads to the optimized sensor positions. These findings are compared to results from laboratory experiments on the modeled structure, which is a tower-like structure represented by a hollow pipe as the cantilever beam. Conclusively, the combined approach is leading to a sound experimental design that leads to a good estimate of the structure’s behavior and model parameters without the need of preliminary measurements for model updating.
Lösung von Randwertaufgaben der Bruchmechanik mit Hilfe einer approximationsbasierten Kopplung zwischen der Finite-Elemente-Methode und Methoden der komplexen Analysis (2020)
Hamzah, Abdulrazzak
Das Hauptziel der vorliegenden Arbeit war es, eine stetige Kopplung zwischen der ananlytischen und numerischen Lösung von Randwertaufgaben mit Singularitäten zu realisieren. Durch die inter-polationsbasierte gekoppelte Methode kann eine globale C0 Stetigkeit erzielt werden. Für diesen Zweck wird ein spezielle finite Element (Kopplungselement) verwendet, das die Stetigkeit der Lösung sowohl mit dem analytischen Element als auch mit den normalen CST Elementen gewährleistet. Die interpolationsbasierte gekoppelte Methode ist zwar für beliebige Knotenanzahl auf dem Interface ΓAD anwendbar, aber es konnte durch die Untersuchung von der Interpolationsmatrix und numerische Simulationen festgestellt werden, dass sie schlecht konditioniert ist. Um das Problem mit den numerischen Instabilitäten zu bewältigen, wurde eine approximationsbasierte Kopplungsmethode entwickelt und untersucht. Die Stabilität dieser Methode wurde anschließend anhand der Untersuchung von der Gramschen Matrix des verwendeten Basissystems auf zwei Intervallen [−π,π] und [−2π,2π] beurteilt. Die Gramsche Matrix auf dem Intervall [−2π,2π] hat einen günstigeren Konditionszahl in der Abhängigkeit von der Anzahl der Kopplungsknoten auf dem Interface aufgewiesen. Um die dazu gehörigen numerischen Instabilitäten ausschließen zu können wird das Basissystem mit Hilfe vom Gram-Schmidtschen Orthogonalisierungsverfahren auf beiden Intervallen orthogonalisiert. Das orthogonale Basissystem lässt sich auf dem Intervall [−2π,2π] mit expliziten Formeln schreiben. Die Methode des konsistentes Sampling, die häufig in der Nachrichtentechnik verwendet wird, wurde zur Realisierung von der approximationsbasierten Kopplung herangezogen. Eine Beschränkung dieser Methode ist es, dass die Anzahl der Sampling-Basisfunktionen muss gleich der Anzahl der Wiederherstellungsbasisfunktionen sein. Das hat dazu geführt, dass das eingeführt Basissys-tem (mit 2 n Basisfunktionen) nur mit n Basisfunktion verwendet werden kann. Zur Lösung diese Problems wurde ein alternatives Basissystems (Variante 2) vorgestellt. Für die Verwendung dieses Basissystems ist aber eine Transformationsmatrix M nötig und bei der Orthogonalisierung des Basissystems auf dem Intervall [−π,π] kann die Herleitung von dieser Matrix kompliziert und aufwendig sein. Die Formfunktionen wurden anschließend für die beiden Varianten hergeleitet und grafisch (für n = 5) dargestellt und wurde gezeigt, dass diese Funktionen die Anforderungen an den Formfunktionen erfüllen und können somit für die FE- Approximation verwendet werden. Anhand numerischer Simulationen, die mit der Variante 1 (mit Orthogonalisierung auf dem Intervall [−2π,2π]) durchgeführt wurden, wurden die grundlegenden Fragen (Beispielsweise: Stetigkeit der Verformungen auf dem Interface ΓAD, Spannungen auf dem analytischen Gebiet) über- prüft.
Conceptual modelling: Towards detecting modelling errors in engineering applications (2019)
Gürlebeck, Klaus ; Legatiuk, Dmitrii ; Nilsson, Henrik ; Smarsly, Kay
Rapid advancements of modern technologies put high demands on mathematical modelling of engineering systems. Typically, systems are no longer “simple” objects, but rather coupled systems involving multiphysics phenomena, the modelling of which involves coupling of models that describe different phenomena. After constructing a mathematical model, it is essential to analyse the correctness of the coupled models and to detect modelling errors compromising the final modelling result. Broadly, there are two classes of modelling errors: (a) errors related to abstract modelling, eg, conceptual errors concerning the coherence of a model as a whole and (b) errors related to concrete modelling or instance modelling, eg, questions of approximation quality and implementation. Instance modelling errors, on the one hand, are relatively well understood. Abstract modelling errors, on the other, are not appropriately addressed by modern modelling methodologies. The aim of this paper is to initiate a discussion on abstract approaches and their usability for mathematical modelling of engineering systems with the goal of making it possible to catch conceptual modelling errors early and automatically by computer assistant tools. To that end, we argue that it is necessary to identify and employ suitable mathematical abstractions to capture an accurate conceptual description of the process of modelling engineering systems.
Scalarization Methods for Multi-Objective Structural Optimization (2019)
von Butler, Natalie
Scalarization methods are a category of multiobjective optimization (MOO) methods. These methods allow the usage of conventional single objective optimization algorithms, as scalarization methods reformulate the MOO problem into a single objective optimization problem. The scalarization methods analysed within this thesis are the Weighted Sum (WS), the Epsilon-Constraint (EC), and the MinMax (MM) method. After explaining the approach of each method, the WS, EC and MM are applied, a-posteriori, to three different examples: to the Kursawe function; to the ten bar truss, a common benchmark problem in structural optimization; and to the metamodel of an aero engine exit module. The aim is to evaluate and compare the performance of each scalarization method that is examined within this thesis. The evaluation is conducted using performance metrics, such as the hypervolume and the generational distance, as well as using visual comparison. The application to the three examples gives insight into the advantages and disadvantages of each method, and provides further understanding of an adequate application of the methods concerning high dimensional optimization problems.
Instationäre Wärmeleitung in geschichteten Wänden (2017)
Tschernyschkow, Anton
Analytische Lösung der Wärmeleitungsgleichung für inhomogene Medien um ortsveränderliche Materialeigenschaften zuzulassen, womit die sprunghafte Änderung der Stoffkennwerte näherungsweise erfasst werden kann. Dazu ist ein Sturm-Liouville-Problem zu lösen.
  • 1 to 10
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018