### Refine

#### Document Type

- Article (2)
- Doctoral Thesis (1)

#### Keywords

- Peridynamik (2)
- Variational principle (2)
- Bruchmechanik (1)
- Dual-support (1)
- Elastizität (1)
- Implicit (1)
- Nonlocal operator method (1)
- Operator energy functional (1)
- PDEs (1)
- Stiffness matrix (1)

In this paper, we present an open-source code for the first-order and higher-order nonlocal operator method (NOM) including a detailed description of the implementation. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combined with the method of weighed residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. The implementation in this paper is focused on linear elastic solids for sake of conciseness through the NOM can handle more complex nonlinear problems. The NOM can be very flexible and efficient to solve partial differential equations (PDEs), it’s also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Finally, we present some classical benchmark problems including the classical cantilever beam and plate-with-a-hole problem, and we also make an extension of this method to solve complicated problems including phase-field fracture modeling and gradient elasticity material.

The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate.

In the last two decades, Peridynamics (PD) attracts much attention in the field of fracture mechanics. One key feature of PD is the nonlocality, which is quite different from the ideas in conventional methods such as FEM and meshless method. However, conventional PD suffers from problems such as constant horizon, explicit algorithm, hourglass mode. In this thesis, by examining the nonlocality with scrutiny, we proposed several new concepts such as dual-horizon (DH) in PD, dual-support (DS) in smoothed particle hydrodynamics (SPH), nonlocal operators and operator energy functional. The conventional PD (SPH) is incorporated in the DH-PD (DS-SPH), which can adopt an inhomogeneous discretization and inhomogeneous support domains. The DH-PD (DS-SPH) can be viewed as some fundamental improvement on the conventional PD (SPH). Dual formulation of PD and SPH allows h-adaptivity while satisfying the conservations of linear momentum, angular momentum and energy. By developing the concept of nonlocality further, we introduced the nonlocal operator method as a generalization of DH-PD. Combined with energy functional of various physical models, the nonlocal forms based on dual-support concept are derived. In addition, the variation of the energy functional allows implicit formulation of the nonlocal theory. At last, we developed the higher order nonlocal operator method which is capable of solving higher order partial differential equations on arbitrary domain in higher dimensional space. Since the concepts are developed gradually, we described our findings chronologically.
In chapter 2, we developed a DH-PD formulation that includes varying horizon sizes and solves the "ghost force" issue. The concept of dual-horizon considers the unbalanced interactions between the particles with different horizon sizes. The present formulation fulfills both the balances of linear momentum and angular momentum exactly with arbitrary particle discretization. All three peridynamic formulations, namely bond based, ordinary state based and non-ordinary state based peridynamics can be implemented within the DH-PD framework. A simple adaptive refinement procedure (h-adaptivity) is proposed reducing the computational cost. Both two- and three- dimensional examples including the Kalthoff-Winkler experiment and plate with branching cracks are tested to demonstrate the capability of the method.
In chapter 3, a nonlocal operator method (NOM) based on the variational principle is proposed for the solution of waveguide problem in computational electromagnetic field. Common differential operators as well as the variational forms are defined within the context of nonlocal operators. The present nonlocal formulation allows the assembling of the tangent stiffness matrix with ease, which is necessary for the eigenvalue analysis of the waveguide problem. The present formulation is applied to solve 1D Schrodinger equation, 2D electrostatic problem and the differential electromagnetic vector wave equations based on electric fields.
In chapter 4, a general nonlocal operator method is proposed which is applicable for solving partial differential equations (PDEs) of mechanical problems. The nonlocal operator can be regarded as the integral form, ``equivalent'' to the differential form in the sense of a nonlocal interaction model. The variation of a nonlocal operator plays an equivalent role as the derivatives of the shape functions in the meshless methods or those of the finite element method. Based on the variational principle, the residual and the tangent stiffness matrix can be obtained with ease. The nonlocal operator method is enhanced here also with an operator energy functional to satisfy the linear consistency of the field. A highlight of the present method is the functional derived based on the nonlocal operator can convert the construction of residual and stiffness matrix into a series of matrix multiplications using the predefined nonlocal operators. The nonlocal strong forms of different functionals can be obtained easily via the concept of support and dual-support. Several numerical examples of different types of PDEs are presented.
In chapter 5, we extended the NOM to higher order scheme by using a higher order Taylor series expansion of the unknown field. Such a higher order scheme improves the original NOM in chapter 3 and chapter 4, which can only achieve one-order convergence. The higher order NOM obtains all partial derivatives with specified maximal order simultaneously without resorting to shape functions. The functional based on the nonlocal operators converts the construction of residual and stiffness matrix into a series of matrix multiplication on the nonlocal operator matrix. Several numerical examples solved by strong form or weak form are presented to show the capabilities of this method.
In chapter 6, the NOM proposed as a particle-based method in chapter 3,4,5, has difficulty in imposing accurately the boundary conditions of various orders. In this paper, we converted the particle-based NOM into a scheme with interpolation property. The new scheme describes partial derivatives of various orders at a point by the nodes in the support and takes advantage of the background mesh for numerical integration. The boundary conditions are enforced via the modified variational principle. The particle-based NOM can be viewed a special case of NOM with interpolation property when nodal integration is used. The scheme based on numerical integration greatly improves the stability of the method, as a consequence, the operator energy functional in particle-based NOM is not required. We demonstrated the capabilities of current method by solving the gradient solid problems and comparing the numerical results with the available exact solutions.
In chapter 7, we derived the DS-SPH in solid within the framework of variational principle. The tangent stiffness matrix of SPH can be obtained with ease, and can be served as the basis for the present implicit SPH. We proposed an hourglass energy functional, which allows the direct derivation of hourglass force and hourglass tangent stiffness matrix. The dual-support is {involved} in all derivations based on variational principles and is automatically satisfied in the assembling of stiffness matrix. The implementation of stiffness matrix comprises with two steps, the nodal assembly based on deformation gradient and global assembly on all nodes. Several numerical examples are presented to validate the method.