Refine
Document Type
- Article (58)
- Conference Proceeding (10)
- Preprint (2)
Institute
- Institut für Strukturmechanik (ISM) (59)
- Professur Stochastik und Optimierung (43)
- Graduiertenkolleg 1462 (5)
- Bauhaus-Institut für zukunftsweisende Infrastruktursysteme (b.is) (2)
- Professur Angewandte Mathematik (2)
- Professur Informatik im Bauwesen (2)
- Materialforschungs- und -prüfanstalt an der Bauhaus-Universität (1)
- Professur Modellierung und Simulation - Konstruktion (1)
Keywords
- Angewandte Mathematik (50)
- Stochastik (42)
- Strukturmechanik (42)
- Angewandte Informatik (9)
- Computerunterstütztes Verfahren (9)
- Building Information Modeling (6)
- Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications (6)
- Erdbeben (5)
- Maschinelles Lernen (5)
- rapid visual screening (4)
Many structures in different engineering applications suffer from cracking. In order to make reliable prognosis about the serviceability of those structures it is of utmost importance to identify cracks as precisely as possible by non-destructive testing. A novel approach (XIGA), which combines the Isogeometric Analysis (IGA) and the Extended Finite Element Method (XFEM) is used for the forward problem, namely the analysis of a cracked material, see [1]. Applying the NURBS (Non-Uniform Rational B-Spline) based approach from IGA together with the XFEM allows to describe effectively arbitrarily shaped cracks and avoids the necessity of remeshing during the crack identification problem. We want to exploit these advantages for the inverse problem of detecting existing cracks by non-destructive testing, see e.g. [2]. The quality of the reconstructed cracks however depends on two major issues, namely the quality of the measured data (measurement error) and the discretization of the crack model. The first one will be taken into account by applying regularizing methods with a posteriori stopping criteria. The second one is critical in the sense that too few degrees of freedom, i.e. the number of control points of the NURBS, do not allow for a precise description of the crack. An increased number of control points, however, increases the number of unknowns in the inverse analysis and intensifies the ill-posedness. The trade-off between accuracy and stability is aimed to be found by applying an inverse multilevel algorithm [3, 4] where the identification is started with short knot vectors which successively will be enlarged during the identification process.
In this paper we present an inverse method which is capable of identifying system components in a hydro-mechanically coupled system, i.e. for fluid flow in porous media. As an example we regard water dams that were constructed more than hundred years ago but which are still in use. Over the time ageing processes have changed the condition of these dams. Within the dams fissures might have grown. The proposed method is designed to locate these fissures out of combined mechanical and hydraulic measurements. In a numerical example the fissures or damaged zones are described by a smeared crack model. The task is now to identify simultaneously the spatial distribution of Young’s modulus and the hydraulic permeability due to the fact, that in regions where damages are present, the mechanical stiffness of the system is reduced and the permeability increased. The inversion is shown to be an ill-posed problem. As a consequence regularizing methods have to be applied, where the nonlinear Landweber method (a gradient type method combined with a discrepancy principle) has proven to be an efficient choice.
Polymer modification of mortar and concrete is a widely used technique in order to improve their durability properties. Hitherto, the main application fields of such materials are repair and restoration of buildings. However, due to the constant increment of service life requirements and the cost efficiency, polymer modified concrete (PCC) is also used for construction purposes. Therefore, there is a demand for studying the mechanical properties of PCC and entitative differences compared to conventional concrete (CC). It is significant to investigate whether all the assumed hypotheses and existing analytical formulations about CC are also valid for PCC. In the present study, analytical models available in the literature are evaluated. These models are used for estimating mechanical properties of concrete. The investigated property in this study is the modulus of elasticity, which is estimated with respect to the value of compressive strength. One existing database was extended and adapted for polymer-modified concrete mixtures along with their experimentally measured mechanical properties. Based on the indexed data a comparison between model predictions and experiments was conducted by calculation of forecast errors.
Safety operation of important civil structures such as bridges can be estimated by using fracture analysis. Since the analytical methods are not capable of solving many complicated engineering problems, numerical methods have been increasingly adopted. In this paper, a part of isotropic material which contains a crack is considered as a partial model and the proposed model quality is evaluated. EXtended IsoGeometric Analysis (XIGA) is a new developed numerical approach [1, 2] which benefits from advantages of its origins: eXtended Finite Element Method (XFEM) and IsoGeometric Analysis (IGA). It is capable of simulating crack propagation problems with no remeshing necessity and capturing singular field at the crack tip by using the crack tip enrichment functions. Also, exact representation of geometry is possible using only few elements. XIGA has also been successfully applied for fracture analysis of cracked orthotropic bodies [3] and for simulation of curved cracks [4]. XIGA applies NURBS functions for both geometry description and solution field approximation. The drawback of NURBS functions is that local refinement cannot be defined regarding that it is based on tensorproduct constructs unless multiple patches are used which has also some limitations. In this contribution, the XIGA is further developed to make the local refinement feasible by using Tspline basis functions. Adopting a recovery based error estimator in the proposed approach for evaluation of the model quality and performing the adaptive processes is in progress. Finally, some numerical examples with available analytical solutions are investigated by the developed scheme.
In the field of engineering, surrogate models are commonly used for approximating the behavior of a physical phenomenon in order to reduce the computational costs. Generally, a surrogate model is created based on a set of training data, where a typical method for the statistical design is the Latin hypercube sampling (LHS). Even though a space filling distribution of the training data is reached, the sampling process takes no information on the underlying behavior of the physical phenomenon into account and new data cannot be sampled in the same distribution if the approximation quality is not sufficient. Therefore, in this study we present a novel adaptive sampling method based on a specific surrogate model, the least-squares support vector regresson. The adaptive sampling method generates training data based on the uncertainty in local prognosis capabilities of the surrogate model - areas of higher uncertainty require more sample data. The approach offers a cost efficient calculation due to the properties of the least-squares support vector regression. The opportunities of the adaptive sampling method are proven in comparison with the LHS on different analytical examples. Furthermore, the adaptive sampling method is applied to the calculation of global sensitivity values according to Sobol, where it shows faster convergence than the LHS method. With the applications in this paper it is shown that the presented adaptive sampling method improves the estimation of global sensitivity values, hence reducing the overall computational costs visibly.
When it comes to monitoring of huge structures, main issues are limited time, high costs and how to deal with the big amount of data. In order to reduce and manage them, respectively, methods from the field of optimal design of experiments are useful and supportive. Having optimal experimental designs at hand before conducting any measurements is leading to a highly informative measurement concept, where the sensor positions are optimized according to minimal errors in the structures’ models. For the reduction of computational time a combined approach using Fisher Information Matrix and mean-squared error in a two-step procedure is proposed under the consideration of different error types. The error descriptions contain random/aleatoric and systematic/epistemic portions. Applying this combined approach on a finite element model using artificial acceleration time measurement data with artificially added errors leads to the optimized sensor positions. These findings are compared to results from laboratory experiments on the modeled structure, which is a tower-like structure represented by a hollow pipe as the cantilever beam. Conclusively, the combined approach is leading to a sound experimental design that leads to a good estimate of the structure’s behavior and model parameters without the need of preliminary measurements for model updating.
In order to minimize the probability of foundation failure resulting from cyclic action on structures, researchers have developed various constitutive models to simulate the foundation response and soil interaction as a result of these complex cyclic loads. The efficiency and effectiveness of these model is majorly influenced by the cyclic constitutive parameters. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model based identification of the cyclic constitutive parameters. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimization strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However for the back analysis (calibration) of the soil response to oscillatory load functions, this paper gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high quality solutions are obtained with minimum computational effort. Therefore model responses are produced which adequately describes what would otherwise be experienced in the laboratory or field.