### Refine

#### Document Type

- Conference Proceeding (24)
- Article (23)
- Doctoral Thesis (13)
- Master's Thesis (4)
- Bachelor Thesis (2)
- Diploma Thesis (2)

#### Institute

- Professur Informatik im Bauwesen (41)
- Institut für Strukturmechanik (14)
- Professur Stahlbau (4)
- Professur Baumechanik (3)
- Professur Baustatik und Bauteilfestigkeit (2)
- Bauhaus-Institut für zukunftsweisende Infrastruktursysteme (1)
- Graduiertenkolleg 1462 (1)
- Juniorprofessur Polymere Bindemittel und Baustoffe im Bauwesen (1)
- Professur Grundbau (1)

#### Keywords

- Finite-Elemente-Methode (68) (remove)

This thesis addresses an adaptive higher-order method based on a Geometry Independent Field approximatTion(GIFT) of polynomial/rationals plines over hierarchical T-meshes(PHT/RHT-splines).
In isogeometric analysis, basis functions used for constructing geometric models in computer-aided design(CAD) are also employed to discretize the partial differential equations(PDEs) for numerical analysis. Non-uniform rational B-Splines(NURBS) are the most commonly used basis functions in CAD. However, they may not be ideal for numerical analysis where local refinement is required.
The alternative method GIFT deploys different splines for geometry and numerical analysis. NURBS are utilized for the geometry representation, while for the field solution, PHT/RHT-splines are used. PHT-splines not only inherit the useful properties of B-splines and NURBS, but also possess the capabilities of local refinement and hierarchical structure. The smooth basis function properties of PHT-splines make them suitable for analysis purposes. While most problems considered in isogeometric analysis can be solved efficiently when the solution is smooth, many non-trivial problems have rough solutions. For example, this can be caused by the presence of re-entrant corners in the domain. For such problems, a tensor-product basis (as in the case of NURBS) is less suitable for resolving the singularities that appear since refinement propagates throughout the computational domain. Hierarchical bases and local refinement (as in the case of PHT-splines) allow for a more efficient way to resolve these singularities by adding more degrees of freedom where they are necessary. In order to drive the adaptive refinement, an efficient recovery-based error estimator is proposed in this thesis. The estimator produces a recovery solution which is a more accurate approximation than the computed numerical solution. Several two- and three-dimensional numerical investigations with PHT-splines of higher order and continuity prove that the proposed method is capable of obtaining results with higher accuracy, better convergence, fewer degrees of freedom and less computational cost than NURBS for smooth solution problems. The adaptive GIFT method utilizing PHT-splines with the recovery-based error estimator is used for solutions with discontinuities or singularities where adaptive local refinement in particular domains of interest achieves higher accuracy with fewer degrees of freedom. This method also proves that it can handle complicated multi-patch domains for two- and three-dimensional problems outperforming uniform refinement in terms of degrees of freedom and computational cost.

Matrix-free voxel-based finite element method for materials with heterogeneous microstructures
(2019)

Modern image detection techniques such as micro computer tomography
(μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis.
However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm.
This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained.

Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials
(2017)

The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method
considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton-
Raphson approach. Post-processing of simulation results to be used as visualization
module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer.
In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a
given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests.
Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine–scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different
interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young’s modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses.

The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration.
An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof.
The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback.
The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested.
Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model.
The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed.
When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure.

Briefly, the two basic questions that this research is supposed to answer are:
1. Howmuch fiber is needed and how fibers should be distributed through a fiber reinforced composite (FRC) structure in order to obtain the optimal and reliable structural response?
2. How do uncertainties influence the optimization results and reliability of the structure?
Giving answer to the above questions a double stage sequential optimization algorithm for finding the optimal content of short fiber reinforcements and their distribution in the composite structure, considering uncertain design parameters, is presented. In the first stage, the optimal amount of short fibers in a FRC structure with uniformly distributed fibers is conducted in the framework of a Reliability Based Design Optimization (RBDO) problem. Presented model considers material, structural and modeling uncertainties. In the second stage, the fiber distribution optimization (with the aim to further increase in structural reliability) is performed by defining a fiber distribution function through a Non-Uniform Rational BSpline (NURBS) surface. The advantages of using the NURBS surface as a fiber distribution function include: using the same data set for the optimization and analysis; high convergence rate due to the smoothness of the NURBS; mesh independency of the optimal layout; no need for any post processing technique and its non-heuristic nature. The output of stage 1 (the optimal fiber content for homogeneously distributed fibers) is considered as the input of stage 2. The output of stage 2 is the Reliability Index (b ) of the structure with the optimal fiber content and distribution.
First order reliability method (in order to approximate the limit state function) as well as different material models including Rule of Mixtures, Mori-Tanaka, energy-based approach and stochastic multi-scales are implemented in different examples. The proposed combined model is able to capture the role of available uncertainties in FRC structures through a computationally efficient algorithm using all sequential, NURBS and sensitivity based techniques. The methodology is successfully implemented for interfacial shear stress optimization in sandwich beams and also for optimization of the internal cooling channels in a ceramic matrix composite.
Finally, after some changes and modifications by combining Isogeometric Analysis, level set and point wise density mapping techniques, the computational framework is extended for topology optimization of piezoelectric / flexoelectric materials.

Piezoelectric materials are used in several applications as sensors and actuators where they experience high stress and electric field concentrations as a result of which they may fail due to fracture. Though there are many analytical and experimental works on piezoelectric fracture mechanics. There are very few studies about damage detection, which is an interesting way to prevent the failure of these ceramics.
An iterative method to treat the inverse problem of detecting cracks and voids in piezoelectric structures is proposed. Extended finite element method (XFEM) is employed for solving the inverse problem as it allows the use of a single regular mesh for large number of iterations with different flaw geometries.
Firstly, minimization of cost function is performed by Multilevel Coordinate Search (MCS) method. The XFEM-MCS methodology is applied to two dimensional electromechanical problems where flaws considered are straight cracks and elliptical voids. Then a numerical method based on combination of classical shape derivative and level set method for front propagation used in structural optimization is utilized to minimize the cost function. The results obtained show that the XFEM-level set methodology is effectively able to determine the number of voids in a piezoelectric structure and its corresponding locations.
The XFEM-level set methodology is improved to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure. The material interfaces are implicitly represented by level sets which are identified by applying regularisation using total variation penalty terms. The formulation is presented for three dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material subdomains in the presence of higher noise levels.
Piezoelectric nanostructures exhibit size dependent properties because of surface elasticity and surface piezoelectricity. Initially a study to understand the influence of surface elasticity on optimization of nano elastic beams is performed. The boundary of the nano structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target
displacement, are chosen for the numerical examples. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams.
Finally a conventional cantilever energy harvester with a piezoelectric nano layer is analysed. The presence of surface piezoelectricity in nano beams and nano plates leads to increase in electromechanical coupling coefficient. Topology optimization of these piezoelectric structures in an energy harvesting device to further increase energy conversion using appropriately modified XFEM-level set algorithm is performed .

Methods based on B-splines for model representation, numerical analysis and image registration
(2015)

The thesis consists of inter-connected parts for modeling and analysis using newly developed isogeometric methods. The main parts are reproducing kernel triangular B-splines, extended isogeometric analysis for solving weakly discontinuous problems, collocation methods using superconvergent points, and B-spline basis in image registration applications.
Each topic is oriented towards application of isogeometric analysis basis functions to ease the process of integrating the modeling and analysis phases of simulation.
First, we develop reproducing a kernel triangular B-spline-based FEM for solving PDEs. We review the triangular B-splines and their properties. By definition, the triangular basis function is very flexible in modeling complicated domains. However, instability results when it is applied for analysis. We modify the triangular B-spline by a reproducing kernel technique, calculating a correction term for the triangular kernel function from the chosen surrounding basis. The improved triangular basis is capable to obtain the results with higher accuracy and almost optimal convergence rates.
Second, we propose an extended isogeometric analysis for dealing with weakly discontinuous problems such as material interfaces. The original IGA is combined with XFEM-like enrichments which are continuous functions themselves but with discontinuous derivatives. Consequently, the resulting solution space can approximate solutions with weak discontinuities. The method is also applied to curved material interfaces, where the inverse mapping and the curved triangular elements are considered.
Third, we develop an IGA collocation method using superconvergent points. The collocation methods are efficient because no numerical integration is needed. In particular when higher polynomial basis applied, the method has a lower computational cost than Galerkin methods. However, the positions of the collocation points are crucial for the accuracy of the method, as they affect the convergent rate significantly. The proposed IGA collocation method uses superconvergent points instead of the traditional Greville abscissae points. The numerical results show the proposed method can have better accuracy and optimal convergence rates, while the traditional IGA collocation has optimal convergence only for even polynomial degrees.
Lastly, we propose a novel dynamic multilevel technique for handling image registration. It is application of the B-spline functions in image processing. The procedure considered aims to align a target image from a reference image by a spatial transformation. The method starts with an energy function which is the same as a FEM-based image registration. However, we simplify the solving procedure, working on the energy function directly. We dynamically solve for control points which are coefficients of B-spline basis functions. The new approach is more simple and fast. Moreover, it is also enhanced by a multilevel technique in order to prevent instabilities. The numerical testing consists of two artificial images, four real bio-medical MRI brain and CT heart images, and they show our registration method is accurate, fast and efficient, especially for large deformation problems.

We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.

This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.

This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions.

The point collocation method of finite spheres (PCMFS) is used to model the hyperelastic response of soft biological tissue in real time within the framework of virtual surgery simulation. The proper orthogonal decomposition (POD) model order reduction (MOR) technique was used to achieve reduced-order model of the problem, minimizing computational cost. The PCMFS is a physics-based meshfree numerical technique for real-time simulation of surgical procedures where the approximation functions are applied directly on the strong form of the boundary value problem without the need for integration, increasing computational efficiency. Since computational speed has a significant role in simulation of surgical procedures, the proposed technique was able to model realistic nonlinear behavior of organs in real time. Numerical results are shown to demonstrate the effectiveness of the new methodology through a comparison between full and reduced analyses for several nonlinear problems. It is shown that the proposed technique was able to achieve good agreement with the full model; moreover, the computational and data storage costs were significantly reduced.

A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed.

Mit der Finite-Elemente-Methode kann das geometrisch und physikalisch nichtlineare Tragverhalten von Stahlbetonelementen nachgebildet werden. Aufgrund des nichtlinearen Verhaltens im Druckbereich sowie der Rissbildung unter Zugbeanspruchung ist die Steifigkeit des Betons in der Regel nicht konstant. Maßgebend für die Genauigkeit der Berechnung ist die Beschreibung dieser Steifigkeit über die gesamte Struktur sowie über ein einzelnes Element. Der Fokus der Arbeit liegt auf der Ermittlung der Steifigkeitsmatrizen für die geometrisch und physikalisch nichtlineare Analyse. Dabei sollen die linearen und nichtlinearen Anteile der Steifigkeitsmatrix unter Berücksichtigung einer über das Element veränderlichen Steifigkeit entwickelt werden. Auf Basis der theoretischen Untersuchungen werden die Algorithmen zum Aufstellen der Steifigkeits- und B-Matrix in der Software MATLAB implementiert. Durch Integration der neuen Module in eine bestehende MATLAB FEM Anwendung sollen die Algorithmen anhand von Beispielrechnungen verifiziert werden.

The nonlinear behavior of concrete can be attributed to the propagation of microcracks within the heterogeneous internal material structure. In this thesis, a mesoscale model is developed which allows for the explicit simulation of these microcracks. Consequently, the actual physical phenomena causing the complex nonlinear macroscopic behavior of concrete can be represented using rather simple material formulations. On the mesoscale, the numerical model explicitly resolves the components of the internal material structure. For concrete, a three-phase model consisting of aggregates, mortar matrix and interfacial transition zone is proposed. Based on prescribed grading curves, an efficient algorithm for the generation of three-dimensional aggregate distributions using ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is described using a continuum damage approach. In order to reduce spurious mesh sensitivities, introduced by the softening behavior of the matrix material, nonlocal integral-type material formulations are applied. The propagation of cracks at the interface between aggregates and mortar matrix is represented in a discrete way using a cohesive crack approach. The iterative solution procedure is stabilized using a new path following constraint within the framework of load-displacement-constraint methods which allows for an efficient representation of snap-back phenomena. In several examples, the influence of the randomly generated heterogeneous material structure on the stochastic scatter of the results is analyzed. Furthermore, the ability of mesoscale models to represent size effects is investigated. Mesoscale simulations require the discretization of the internal material structure. Compared to simulations on the macroscale, the numerical effort and the memory demand increases dramatically. Due to the complexity of the numerical model, mesoscale simulations are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous multiscale approach is presented which allows for the incorporation of mesoscale models within nonlinear simulations of concrete structures. In heterogeneous multiscale models, only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale, whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial point in simulations with heterogeneous multiscale models is the coupling of sub-domains discretized on different length scales. The sub-domains differ not only in the size of the finite elements but also in the constitutive description. In this thesis, different methods for the coupling of non-matching discretizations - constraint equations, the mortar method and the arlequin method - are investigated and the application to heterogeneous multiscale models is presented. Another important point is the detection of critical regions. An adaptive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale is proposed. In this context, several indicators which trigger the model adaptation are introduced. Finally, the application of the proposed adaptive heterogeneous multiscale approach in nonlinear simulations of concrete structures is presented.

We propose an enhanced iterative scheme for the precise reconstruction of piezoelectric material parameters from electric impedance and mechanical displacement measurements. It is based on finite-element simulations of the full three-dimensional piezoelectric equations, combined with an inexact Newton or nonlinear Landweber iterative inversion scheme. We apply our method to two piezoelectric materials and test its performance. For the first material, the manufacturer provides a full data set; for the second one, no material data set is available. For both cases, our inverse scheme, using electric impedance measurements as input data, performs well.

Die vorliegende Diplomarbeit befasst sich mit der Simulation der Spannungszustände und Grundwassersituation anhand eines Praxisbeispieles. Dieses wird mit Hilfe des Finite-Elemente(FE)-Programms PLAXIS V8 durchgeführt. Dabei gilt es die Sicherheit gegen Hydraulischen Grundbruch und den Einfluss der baugrubenseitigen Widerlagerwirkung zu bestimmen. Außerdem werden vorhandene Theorien zur Nachweisführung gegen Hydraulischen Grundbruch in bindigem Boden überprüft und die Ergebnisse mit denen aus der FE-Berechnung verglichen. Abschließend ist die Frage zu klären, ob beim Nachweis der Standsicherheit einer Baugrubenwand ein Versagen durch Hydraulischen Grundbruch ausgeschlossen werden kann.

In dieser Arbeit wird ein hybrider Glas-Kunststoff-Verbundquerschnitt unter statischer Belastung und Lasten aus Temperatureinwirkungen untersucht. Die Untersuchungen werden zunächst unter der Annahme kurzer Lasteinwirkungsdauer durchgeführt. Abhängig von den Steifigkeitsverhältnissen der im Verbundquerschnitt verwendeten Materialien ergeben sich Erkenntnisse für die Normal- und Schubspannungsverteilung im Verbundquerschnitt, für die Spannungsquantitäten und für die Beanspruchungen der einzelnen Materialien. Später in der Arbeit wird auch der Einfluss längerer Belastungszeiten untersucht. Die Untersuchung der Belastungsdauer wird qualitativ durchgeführt.

Auf der Basis der Literaturrecherche wird in dieser Arbeit eine 5-lagige MAG-geschweißte Stumpfnaht an austenitisch-ferritischen Stahl X2CrNiMoN22-5-3 (Duplex-Stahl 1.4462) mit dem FE-Programm „SYSWELD®“ simuliert. Die Berech-nungen der Temperaturfelder werden unter der Berücksichtigung sowohl von tempe-raturunabhängigen als auch temperaturabhängigen thermophysikalischen Material-eigenschaften am drei-dimensionalen und zwei-dimensionalen Modell durchgeführt. Die berechneten Temperatur-Zeit-Verläufe und Gefügeumwandlungen beim MAG-Schweißen der Stumpfnaht werden hinsichtlich der Einflüsse und Veränderun-gen analysiert und die ermittelten Abkühlzeiten t12/8 werden für jede Schweißlage bewertet. Anschließend werden die Berechnungen des Eigenspannungszustandes für einzelne Schweißlagen untersucht.

The importance of modern simulation methods in the mechanical analysis of heterogeneous solids is presented in detail. Thereby the problem is noted that even for small bodies the required high-resolution analysis reaches the limits of today's computational power, in terms of memory demand as well as acceptable computational effort. A further problem is that frequently the accuracy of geometrical modelling of heterogeneous bodies is inadequate. The present work introduces a systematic combination and adaption of grid-based methods for achieving an essentially higher resolution in the numerical analysis of heterogeneous solids. Grid-based methods are as well primely suited for developing efficient and numerically stable algorithms for flexible geometrical modeling. A key aspect is the uniform data management for a grid, which can be utilized to reduce the effort and complexity of almost all concerned methods. A new finite element program, called Mulgrido, was just developed to realize this concept consistently and to test the proposed methods. Several disadvantages which generally result from grid discretizations are selectively corrected by modified methods. The present work is structured into a geometrical model, a mechanical model and a numerical model. The geometrical model includes digital image-based modeling and in particular several methods for the theory-based generation of inclusion-matrix models. Essential contributions refer to variable shape, size distribution, separation checks and placement procedures of inclusions. The mechanical model prepares the fundamentals of continuum mechanics, homogenization and damage modeling for the following numerical methods. The first topic of the numerical model introduces to a special version of B-spline finite elements. These finite elements are entirely variable in the order k of B-splines. For homogeneous bodies this means that the approximation quality can arbitrarily be scaled. In addition, the multiphase finite element concept in combination with transition zones along material interfaces yields a valuable solution for heterogeneous bodies. As the formulation is element-based, the storage of a global stiffness matrix is superseded such that the memory demand can essentially be reduced. This is possible in combination with iterative solver methods which represent the second topic of the numerical model. Here, the focus lies on multigrid methods where the number of required operations to solve a linear equation system only increases linearly with problem size. Moreover, for badly conditioned problems quite an essential improvement is achieved by preconditioning. The third part of the numerical model discusses certain aspects of damage simulation which are closely related to the proposed grid discretization. The strong efficiency of the linear analysis can be maintained for damage simulation. This is achieved by a damage-controlled sequentially linear iteration scheme. Finally a study on the effective material behavior of heterogeneous bodies is presented. Especially the influence of inclusion shapes is examined. By means of altogether more than one hundred thousand random geometrical arrangements, the effective material behavior is statistically analyzed and assessed.

Um die Qualität einer FE – Lösung beurteilen zu können, stellt man Aussagen über den Fehler in der numerischen Lösung an. Dieser ist die Differenz von analytischer und numerischer Lösung. In der Regel liegt eine exakte Lösung jedoch nicht vor, der Fehler muss daher geschätzt werden. In der Arbeit werden residuelle und glättungsbasierte Verfahren zur Fehlerschätzung vorgestellt. Sie werden an Systemen deren exakte Lösungen vorhanden sind miteinander auf ihre Effektivität und Zuverlässigkeit untersucht. Weiter wird ein Vergleich des in ANSYS programmierten Fehlerschätzers mit dem in der ANSYS- Dokumentation beschriebenen Verfahren durchgeführt.

Die vorliegende Arbeit beschäftigt sich mit der dynamischen Analyse der Sprottetalbrücke infolge aufgetretener Asphaltschäden. Sie beinhaltet die Erstellung eines FE-Modells, der Darstellung der theoretischen Grundlagen der Dynamik sowie die Auswertung von berechneten Eigenformen und Asphaltspannungen unter Berücksichtigung der derzeit gültigen Normen.

This master thesis explores an important and under-researched topic on the so-called bridging of length scales (from >meso< to >macro<), with the concept of homogenization in which the careful characterization of mechanical response requires that the developed material model >bridge< the representations of events that occur at two different scales. The underlying objective here is to efficiently incorporate material length scales in the classical continuum plasticity/damage theories through the concept of homogenization theory. The present thesis is devoted to computational modeling of heterogeneous materials, primarily to matrix-inclusion type of materials. Considerations are focused predominantly on the elastic and damage behavior as a response to quasistatic mechanical loading. Mainly this thesis focuses to elaborate a sound numerical homogenization model which accounts for the prediction of overall properties with the application of different types of boundary conditions namely: periodic, homogeneous and mixed type of boundary conditions over two-dimensional periodic and non-periodic RVEs and three-dimensional non-periodic RVEs. Identification of the governing mechanisms and assessing their effect on the material behavior leads one step further. Bringing together this knowledge with service requirements allows for functional oriented materials design. First, this thesis gives attention on providing the theoretical basic mechanisms involved in homogenization techniques and a survey will be made on existing analytical methods available in literature. Second, the proposed frameworks are implemented in the well known finite element software programs ANSYS and SLang. Simple and efficient algorithms in FORTRAN are developed for automated microstructure generation using RSA algorithm in order to perform a systematic numerical testing of microstructures of composites. Algorithms are developed to generate constraint equations in periodic boundary conditions and different displacements applied spatially over the boundaries of the RVE in homogeneous boundary conditions. Finally, nonlinear simulations are performed at mesolevel, by considering continuum scalar damage behavior of matrix material with the linear elastic behavior of aggregates with the assumption of rigid bond between constituents.

Das FEM-Programmsystem „SYSWELD“ kommt für die Berechnung des Temperaturfeldes bei einer Laserstrahlschweißung zum Einsatz. Insbesondere sollen der Einfluss des Energieeintrages und die damit verbundene Gefügeumwandlung eines Feinkornbaustahles untersucht und Aussagen zur notwendigen Modellierungsgenauigkeit der Nahtgeometrie bzw. Netzverfeinerung getroffen werden. Im Einzelnen sind folgende Teilaufgaben zu lösen: - ausführliche Literaturrecherche zur numerischen Analyse von Schweißverbindungen insbesondere zu temperaturabhängigen Materialeigenschaften von Feinkornbaustählen, - Darstellung der Wärmequelle für das Laserstrahlschweißen, - Erprobung unterschiedlicher Netzvarianten für die FE-Analyse von instationären Temperaturfeldern, - Untersuchung zur Modellierungsgenauigkeit der Nahtgeometrie, - Parameterstudien zum Einfluss der Materialkennwerte und Gefügekinetik auf das Temperaturfeld sowie das Gefüge.

In der täglichen Ingenieurpraxis werden in zunehmenden Maße numerische Analysen im Rahmen der Finite-Elemente-Methode auch zur Untersuchung stabilitätsgefährdeter Strukturen eingesetzt. Für die aktuelle Praxis, insbesondere im konstruktiven Stahlbau, ist jedoch festzustellen, dass zwischen der fortgeschrittenen Theorie und dem Niveau der praktischen Anwendung numerischer Stabilitätsanalysen eine große Kluft besteht. Aus praktischer Sicht erscheint es unumgänglich, die weiter wachsende Diskrepanz zwischen den umfangreichen theoretischen Möglichkeiten und der gegenwärtigen Praxis abzubauen. Damit steht der praktisch tätige Ingenieur vor der Aufgabe, sein Wissen auf dem Gebiet numerischer Stabilitätsanalysen zu vertiefen und bereits vorhandene FE-Programme um Berechnungsalgorithmen für umfassende numerische Stabilitätsanalysen zu erweitern. Dafür werden in der Arbeit die Grundlagen einer FEM- orientierten modernen Stabilitätstheorie einheitlich und aus Sicht einer praktischen Anwendung aufbereitet. Die Darstellung von realisierten programmtechnischen Umsetzungen für erweiterte Analysenmethoden wie Nachbeulanalysen, Pfadwechsel und Approximationen imperfekter Pfade ermöglicht eine Erweiterung des Methodenvorrates. Die innerhalb der Arbeit untersuchten Beispiele zeigen, dass durch die Anwendung der behandelten Verfahren das Tragverhalten einer stabilitätsgefährdeten Struktur wesentlich besser eingeschätzt werden kann als bei Beschränkung auf die herkömmlichen Analysemethoden.

The worldwide growth of communication networks and associated technologies provide the basic infrastructure for new ways of executing the engineering process. Collaboration amongst team members seperated in time and location is of particular importance. Two broad themes can be recognized in research pertaining to distributed collaboration. One theme focusses on the technical and technological aspects of distributed work, while the other emphasises human aspects thereof. The case of finite element structural analysis in a distributed collaboratory is examined in this paper. An approach is taken which has its roots in human aspects of the structural analysis task. Based on experience of how structural engineers currently approach and execute this task while utilising standard software designed for use on local workstations only, criteria are stated for a software architechture that could support collaborative structural analysis. Aspects of a pilot application and the results of qualitative performance measurements are discussed.

The method of the finite elements is an adaptable numerical procedure for interpolation as well as for the numerical approximation of solutions of partial differential equations. The basis of these procedure is the formulation of suitable finite elements and element decompositions of the solution space. Classical finite elements are based on triangles or quadrangles in the two-dimensional space and tetrahedron or hexahedron in the threedimensional space. The use of arbitrary-dimensional convex and non-convex polyhedrons as the geometrical basis of finite elements increases the flexibility of generating finite element decompositions substantially and is sometimes the only way to get a clear decomposition...

The influence of vortex-induces vibrations on vertical tie rods has been proved as a determinant load factor in the lifetime-oriented dimensioning of arched steel bridges. Particularly, the welded connection plates between the suspenders and the arches often exhibit cracks induced primarily rods. In this context, the synchronization of the vortex-shedding to the rod motion in a critical wind velocity range, the so-called lock-in effect, is of essential interest.

Analysis System for Bridge Test (Chinese name abbr.: QLJC) is an application software specially designed for bridge test to analyze the static and dynamic character of bridge structures, calculate efficiency ratio of load test, pick up the results of observation points and so on. In this paper, research content, system design, calculation theory, characteristics and practical application of QLJC is introduced in detail.

Transport problems, as, for instance, the transport of sediment in hydraulic engineering and the transport of harmful substances through porous media, play an important role in many fields of civil engineering. Other examples include the dissipation of heat or sound as well as the simulation of traffic with macroscopic models. The contribution explains the analysis of the applicability of Voronoi-based finite volume methods for the approximation of solutions of transport problems. A special concern is the discretisation of the transport equation. Current limitations of the method as well as ideas for stabilisation are explained with examples.

This paper presents the combination of two different parallelization environments, OpenMP and MPI, in one numerical simulation tool. The computation of the system matrices and vectors is parallelized with OpenMP and the solution of the system of equations is done with the MPIbased solver MUMPS. The efficiency of both algorithms is shown on several linear and nonlinear examples using the Finite Element Method and a meshless discretization technique.

The primary objective of initial shape analysis of a cable stayed bridge is to calculate initial installation cable tension forces and to evaluate fabrication camber of main span and pylon providing the final longitudinal profile of the bridge at the end of construction. In addition, the initial cable forces depending on the alternation of the bridge’s shape can be obtained from the analysis, and will be used to provide construction safety during construction. In this research, we conducted numerical experiments for initial shape of Ko-ha bridge, which will be constructed in the near future, using three different typical methods such as continuous beam method, linear truss method, and IIMF (Introducing Initial Member Force) method

The displacements and stresses in arch dams and their abutments are frequently determined with 20-node brick elements. The elements are distorted near the contact plane between the wall and the abutment. A cantilever beam testbed has been developed to investigate the consequences of this distortion. It is shown that the deterioration of the accuracy in the computed stresses is significant. A compatible 18-node wedge element with linear stress variation is developed as an alternative to the brick element. The shape of this element type is readily adapted to the shape of the contact plane. It is shown that the accuracy of the computed stresses in the vicinity of the contact plane is improved significantly by the use of wedge elements.

Framed-tube system with multiple internal tubes is analysed using an orthotropic box beam analogy approach in which each tube is individually modelled by a box beam that accounts for the flexural and shear deformations, as well as the shear-lag effects. A simple numerical modeling technique is proposed for estimating the shear-lag phenomenon in tube structures with multiple internal tubes. The proposed method idealizes the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. The numerical analysis is based on the minimum potential energy principle in conjunction with the variational approach. The shear-lag phenomenon of such structures is studied taking into account the additional bending moments in the tubes. A detailed work is carried out through the numerical analysis of the additional bending moment. The moment factor is further introduced to identify the shear lag phenomenon along with the additional moment.

Creation of hierarchical sequence of the plastic and viscoplastic models according to different levels of structure approximations is considered. Developed strategy of multimodel analysis, which consists of creation of the inelastic models library, determination of selection criteria system and caring out of multivariant sequential clarifying computations, is described. Application of the multimodel approach in numerical computations has demonstrated possibility of reliable prediction of stress-strain response under wide variety of combined nonproportional loading.

The paper investigates accuracy of deflection predictions made by the finite element package ATENA and design code methods ACI and EC2. Deflections have been calculated for a large number of experimental reinforced concrete beams reported by three investigators. Statistical parameters have been established for each of the technique at different load levels, separately for the beams with small and moderate reinforcement ratio.

Development and Analysis of Sparse Matrix Concepts for Finite Element Approximation on general Cells
(2004)

In engineering and computing, the finite element approximation is one of the most well-known computational solution techniques. It is a great tool to find solutions for mechanic, fluid mechanic and ecological problems. Whoever works with the finite element method will need to solve a large system of linear equations. There are different ways to find a solution. One way is to use a matrix decomposition technique such as LU or QR. The other possibility is to use an iterative solution algorithm like Conjugate Gradients, Gauß-Seidel, Multigrid Methods, etc. This paper will focus on iterative solvers and the needed storage techniques...

In this paper, systematic analyses for the shoring systems installed to support the applied loads during construction are performed on the basis of the numerical approach. On the basis of a rigorous time-dependent analysis, structural behaviors of reinforced concrete (RC) frame structures according to the changes in design variables such as the types of shoring systems, shore stiffness and shore spacing are analyzed and discussed. The time-dependent deformations of concrete such as creep and shrinkage and construction sequences of frame structures are also taken into account to minimize the structural instability and to reach to an improved design of shoring system because these effects may increase the axial forces delivered to the shores. In advance, the influence of the column shortening effect, generally mentioned in a tall building structure, is analyzed. From many parametric studies, it has been finally concluded that the most effective shoring system in RC frame structures is 2S1R (two shores and one reshore) regardless of the changes in design variables.

A large-scale computer modeling and simulation method is presented for environmental flows in urban area. Several GIS and CAD data were used for the preparation of shape model and an automatic mesh generation method based on Delaunay method was developed. Parallel finite element method based on domain decomposition method was employed for the numerical simulation of natural phenomena. The present method was applied to the simulation of flood flow and wind flow in urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments.

The optimization of continuous structures requires careful attention to discretization errors. Compared to ordinary low order formulation (h-elements) in conjunction with an adaptive mesh refinement in each optimization step, the use of high order finite elements (so called p-elements) has several advantages. However, compared to the h-method a higher order finite element analysis program poses higher demands from a software engineering point of view. In this article the basics of an object oriented higher order finite element system especially tailored to the use in structural optimization is presented. Besides the design of the system, aspects related to the employed implementation language Java are discussed.

Discrete-continual Finite Element Method of Analysis for Three-dimensional Curvilinear Structures
(2003)

This paper is devoted to discrete-continual finite element method (DCFEM) of analysis for three-dimensional curvilinear structures. Operational and variational formulations of the problem in the ring coordinate system are presented. The discrete-continual design model for structures with constant physical and geometrical parameters in longitudinal direction is offered on the basis of so-called curvilinear discrete-continual finite elements. Element coordinate system, approximation of nodal unknowns, construction of element nodal load vector are under consideration. Element system of differential equations is formulated with use of special generalized block-structured stiffness matrix of discrete-continual finite element. Local differential relations are formulated. Resultant multipoint boundary problem for system of ordinary differential equations is given. Method of analytical solution of multipoint boundary problems in structural analysis is offered as well. Its major peculiarities include universality, computer-oriented algorithm involving theory of distributions, computational stability, optimal conditionality of resultant systems, partial Jordan decomposition of matrix of coefficients, eliminating necessity of calculation of root vectors. Brief information concerning developed software is provided.

Hydro- und morphodynamischen Prozesse in Binnengewässern und im Küstennahbereich erzeugen hochkomplexe Phänomene. Zur Beurteilung der Entwicklung von Küstenzohnen, von Flussbetten sowie von Eingriffen des Menschen in Form von Schutzbauwerken sind geeignete numerische Modellwerkzeuge notwendig. Es wird ein holistischer Modellansatz zur Approximation gekoppelter Seegangs-, Strömungs- und Morphodynamischer Prozesse auf der Basis stabilisierter Finiter Elemente vorgestellt. Der Großteil der Modellgleichungen der Hydro- und Morphodynamik sind Transportgleichungen. Dem Transportcharakter dieser Gleichungen entsprechend wird ein stabilisiertes Finites Element Verfahren auf Dreiecken vorgestellt. Die vorgestellte Approximation entspricht einem streamline upwinding Petrov-Galerkin-Verfahrens für vektorwertige mehrdimensionale Probleme, bei dem der Fehler eines Standard-Galerkin-Verfahrens mit Hilfe eines Upwinding-Koeffizienten minimiert wird. Die Wahl des Upwinding-Koeffizienten ist übertragbar auf andere Problemklassen und basiert ausschließlich auf dem Charakter der zugrundeliegene Das Modell wurde für Seegangs- und Strömungs-Untersuchungen im Jade-Weser-Ästuar an der deutschen Nordseeküste eingesetzt.

Die Methode der Finiten Elemente ist ein numerisches Verfahren zur Interpolation vorgegebener Werte und zur numerischen Approximation von Lösungen stationärer oder instationärer partieller Differentialgleichungen bzw. Systemen partieller Differentialgleichungen. Grundlage dieser Verfahren ist die Formulierung geeigneter Finiter Elemente und Finiter Element Zerlegungen. Finite Elemente besitzen in der Regel eine geometrische Basis bestehend aus Strecken im eindimensionalen, Drei- oder Vierecken im zweidimensionalen und Tetra- oder Hexaedern im dreidimensionalen euklidischen Raum, eine Menge von Freiheitsgraden und eine Basis von Funktionen. Die geometrische Basis eines Finiten Elements wird verallgemeinert als geometrische Zelle formuliert. Diese geschlossene geometrische Formulierung führt zu einer geometrieunabhängigen Definition der Basisfunktionen eines Finiten Elements in den Zellkoordinaten der geometrischen Zelle. Finite Elemente auf der Basis geometrischer Zellen werden als Bestandteile Finiter Element Zerlegungen in Finiten Element Interpolationen und Finiten Element Approximationen verwendet. Die Finiten Element Approximationen werden am Beispiel der 2-dimensionalen Diffusionsgleichung über das Standard-Galerkin-Verfahren ermittelt.

In this paper we consider modelling of composite material with inclusions where the elastic material properties of both matrix and inclusions are uncertain and vary within prescribed bounds. Such mechanical systems, involving interval uncertainties and modelled by finite element method, can be described by parameter dependent systems of linear interval equations and process variables depending on the system solution. A newly developed hybrid interval approach for solving parametric interval linear systems is applied to the considered model and the results are compared to other interval methods. The hybrid approach provides very sharp bounds for the process variables - element strains and stresses. The sources for overestimation when dealing with interval computations are demonstrated. Based on the element strains and stresses, we introduce a definition for the values of nodal strains and stresses by using a set-theoretic approach.

A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales
(2003)

This paper introduces a method to generate adequate inclusion-matrix geometries of concrete in two and three dimensions, which are independent of any specific numerical discretization. The article starts with an analysis on shapes of natural aggregates and discusses corresponding mathematical realizations. As a first prototype a two-dimensional generation of a mesoscale model is introduced. Particle size distribution functions are analysed and prepared for simulating an adequate three-dimensional representation of the aggregates within a concrete structure. A sample geometry of a three-dimensional test cube is generated and the finite element analysis of its heterogeneous geometry by a uniform mesh is presented. Concluding, aspects of a multiscale analysis are discussed and possible enhancements are proposed.

A realistic and reliable model is an important precondition for the simulation of revitalization tasks and the estimation of system properties of existing buildings. Thereby, the main focus lies on the parameter identification, the optimization strategies and the preparation of experiments. As usual structures are modeled by the finite element method. This as well as other techniques are based on idealizations and empiric material properties. Within one theory the parameters of the model should be approximated by gradually performed experiments and their analysis. This approximation method is performed by solving an optimization problem, which is usually non-convex, of high dimension and possesses a non-differentiable objective function. Therefore we use an optimization procedure based on genetic algorithms which was implemented by using the program package SLang...

Iso-parametric finite elements with linear shape functions show in general a too stiff element behavior, called locking. By the investigation of structural parts under bending loading the so-called shear locking appears, because these elements can not reproduce pure bending modes. Many studies dealt with the locking problem and a number of methods to avoid the undesirable effects have been developed. Two well known methods are the >Assumed Natural Strain< (ANS) method and the >Enhanced Assumed Strain< (EAS) method. In this study the EAS method is applied to a four-node plane element with four EAS-parameters. The paper will describe the well-known linear formulation, its extension to nonlinear materials and the modeling of material uncertainties with random fields. For nonlinear material behavior the EAS parameters can not be determined directly. Here the problem is solved by using an internal iteration at the element level, which is much more efficient and stable than the determination via a global iteration. To verify the deterministic element behavior the results of common test examples are presented for linear and nonlinear materials. The modeling of material uncertainties is done by point-discretized random fields. To show the applicability of the element for stochastic finite element calculations Latin Hypercube Sampling was applied to investigate the stochastic hardening behavior of a cantilever beam with nonlinear material. The enhanced linear element can be applied as an alternative to higher-order finite elements where more nodes are necessary. The presented element formulation can be used in a similar manner to improve stochastic linear solid elements.

Die vorliegende Arbeit beschäftigt sich mit der Berechnung der Sicherheit von Strukturen mit sowohl geometrisch als auch physikalisch nichtlinearem Verhalten. Die Berechnung der Versagenswahrscheinlichkeit einer Struktur mit Hilfe von Monte-Carlo-Simulationsmethoden erfordert, dass die Funktion der Strukturantwort implizit berechnet wird, zum Beispiel durch nichtlineare Strukturanalysen für jede Realisation der Zufallsvariablen. Die Strukturanalysen bilden jedoch den Hauptanteil am Berechnungsaufwand der Zuverlässigkeitsanalyse, so dass die Analyse von realistischen Strukturen mit nichtlinearem Verhalten durch die begrenzten Computer-Ressourcen stark eingeschränkt ist. Die klassischen Antwortflächenverfahren approximieren die Funktion der Strukturantwort oder aber die Grenzzustandsfunktion durch Polynome niedriger Ordnung. Dadurch ist für die Auswertung des Versagens-Kriteriums nur noch von Interesse, ob eine Realisation der Basisvariablen innerhalb oder außerhalb des von der Antwortflächenfunktion gebildeten Raumes liegt - die Strukturanalyse kann dann entfallen. Bei stark nichtlinearen Grenzzustandsfunktionen versagt die polynomiale Approximation. Das directional sampling neigt bei Problemen mit vielen Zufallsvariablen zu einem systematischen Fehler. Das adaptive importance directional sampling dagegen beseitigt diesen Fehler, verschenkt jedoch Informationen über den Verlauf der Grenzzustandsfunktion, da die aufgefundenen Stützstellen aus den vorangegangenen Simulationsläufen nicht berücksichtigt werden können. Aus diesem Grund erscheint eine Kombination beider Simulationsverfahren und eine Interpolation mittels einer Antwortfläche geeignet, diese Probleme zu lösen. Dies war die Motivation für die Entwicklung eines Verfahren der adaptiven Simulation der Einheitsvektoren und anschließender Interpolation der Grenzzustandsfunktion durch eine Antwortflächenfunktion. Dieses Vorgehen stellt besondere Anforderungen an die Antwortflächenfunktion. Diese muss flexibel genug sein, um stark nichtlineare Grenzzustandsfunktionen beliebig genau annähern zu können. Außerdem sollte die Anzahl der verarbeitbaren Stützstellen nicht begrenzt sein. Auch ist zu berücksichtigen, dass die Ermittlung der Stützstellen auf der Grenzzustandsfunktion nicht regelmäßig erfolgt. Die in dieser Arbeit entwickelten Methoden der lokalen Interpolation der Grenzzustandsfunktion durch Normalen-Hyperebenen bzw. sekantialen Hyperebenen und der sowohl lokalen als auch globalen Interpolation durch gewichtete Radien erfüllen diese Anforderungen. ungen. dieser Arbeit entwickelten Methoden der lokalen Interpolation der Grenzzustandsfunktion durch Normalen-Hyperebenen bzw. sekantialen Hyperebenen und der sowohl lokalen als auch globalen Interpolation durch gewichtete Radien erfüllen diese Anforderungen.

Für den Entwurf von Ingenieurbauten ist eine zuverlässige Prognose über den Spannungsverlauf im Bauwerk und auf dessen Rand von großer Bedeutung. Eine geschlossene Lösung der elastischen Bestimmungsgleichungen des Bauwerks ist in der Regel nicht verfügbar. Es wird daher unter Verwendung der Methode der gewichteten Reste eine schwache Form der Gleichungen abgeleitet, die zu einem gemischten Arbeitsprinzip führt. Das zugehörige Finite-Elemente-Modell erlaubt es Spannungen am Rand des Bauwerks zu ermitteln, die im Gleichgewicht zu den angreifenden Lasten stehen.

Dynamic testing for damage assessment as non-destructive method has attracted growing in-terest for systematic inspections and maintenance of civil engineering structures. In this con-text the paper presents the Stochastic Finite Element (SFE) Modeling of the static and dy-namic results of own four point bending experiments with R/C beams. The beams are dam-aged by an increasing load. Between the load levels the dynamic properties are determined. Calculated stiffness loss factors for the displacements and the natural frequencies show differ-ent histories. A FE Model for the beams is developed with a discrete crack formulation. Cor-related random fields are used for structural parameters stiffness and tension strength. The idea is to simulate different crack evolutions. The beams have the same design parameters, but because of the stochastic material properties their undamaged state isn't yet the same. As the structure is loaded a stochastic first crack occurs on the weakest place of the structure. The further crack evolution is also stochastic. These is a great advantage compared with de-terministic formulations. To reduce the computational effort of the Monte Carlo simulation of this nonlinear problem the Latin-Hypercube sampling technique is applied. From the results functions of mean value and standard deviation of displacements and frequencies are calcu-lated. Compared with the experimental results some qualitative phenomena are good de-scribed by the model. Differences occurs especially in the dynamic behavior of the higher load levels. Aim of the investigations is to assess the possibilities of dynamic testing under consideration of effects from stochastic material properties

There was suggested a phenomenological modified quadratic condition of the beginning of plasticity for plastic and quasifragile orthotropic materials. Limiting surface in the shape of a paraboloid with an axis bend over hydrostatic axis corresponds to the condition. The equations of theory of current with the isotropic and anisotropic hardenings, associated with the suggested yield condition, modified into the version of determining equations of strain theory of plasticity are received. These defining equations formed the basis of highlyprecise non-classic continual (along thickness) theory of non-linear deformation of thick sandwich plates and sloping shells. In the approximations along the cross coordinate the specificity of flexural and non-flexural deformations is taken into account. The necessity of introducing the approximations of higher order, as well as accounting for the cross compression while decreasing of the relatively cross normal and shear layer rigidness is shown. The specifications, obtained in comparison with the known physically nonlinear specified model of the bending of plates with orthotropic layers are distinguished. An effective procedure of linearization of the solving equations and getting the solutions in frames of the discrete-continual scheme of the finite-element method is suggested. The approximations of higher order let to model the appearance of the cracs of layers being split by the introducing of slightly hard thin layers into the finite element, not violating the idea of continuality of theory. Calculation of a threelayer plate with rigid face diaphragms on the contour is considered