• Treffer 2 von 6
Zurück zur Trefferliste

An Experimental Study on the Initial Shear Stiffness in Granular Material under Controlled Multi-Phase Laboratory Conditions

  • The initial shear modulus, Gmax, of soil is an important parameter for a variety of geotechnical design applications. This modulus is typically associated with shear strain levels about 5*10^-3% and below. The critical role of soil stiffness at small-strains in the design and analysis of geotechnical infrastructure is now widely accepted. Gmax is a key parameter in small-strain dynamic analysesThe initial shear modulus, Gmax, of soil is an important parameter for a variety of geotechnical design applications. This modulus is typically associated with shear strain levels about 5*10^-3% and below. The critical role of soil stiffness at small-strains in the design and analysis of geotechnical infrastructure is now widely accepted. Gmax is a key parameter in small-strain dynamic analyses such as those to predict soil behavior or soil-structure interaction during earthquake, explosions, machine or traffic vibration where it is necessary to know how the shear modulus degrades from its small-strain value as the level of shear strain increases. Gmax can be equally important for small-strain cyclic situations such as those caused by wind or wave loading and for small-strain static situations as well. Gmax may also be used as an indirect indication of various soil parameters, as it, in many cases, correlates well to other soil properties such as density and sample disturbance. In recent years, a technique using bender elements was developed to investigate the small-strain shear modulus Gmax. The objective of this thesis is to study the initial shear stiffness for various sands with different void ratios, densities, grain size distribution under dry and saturated conditions, then to compare empirical equations to predict Gmax and results from other testing devices with results of bender elements from this study.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Dokumentart:Masterarbeit
Verfasserangaben: Milad Asslan
DOI (Zitierlink):https://doi.org/10.25643/bauhaus-universitaet.1584Zitierlink
URN (Zitierlink):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20120402-15842Zitierlink
Gutachter:Prof. Dr.-Ing. habil. Carsten KönkeORCiDGND, Prof. Dr.-Ing. habil. Karl Josef WittGND, Dr.-Ing. Frank WuttkeGND
Betreuer:Prof. Dr.-Ing. habil. Carsten KönkeORCiDGND, Prof. Dr.-Ing. habil. Karl Josef WittGND, Dr.-Ing. Frank WuttkeGND
Sprache:Englisch
Datum der Veröffentlichung (online):28.03.2012
Jahr der Erstveröffentlichung:2009
Datum der Abschlussprüfung:25.11.2009
Datum der Freischaltung:02.04.2012
Veröffentlichende Institution:Bauhaus-Universität Weimar
Titel verleihende Institution:Bauhaus-Universität Weimar, Fakultät Bauingenieurwesen
Institute und Partnereinrichtugen:Fakultät Bauingenieurwesen / Professur Bodenmechanik
Seitenzahl:100
GND-Schlagwort:Soil; Shear modulus; Shear wave; Soil dynamics; Bender elements
DDC-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften
BKL-Klassifikation:56 Bauwesen
Lizenz (Deutsch):License Logo Copyright All Rights Reserved