Refine
Document Type
- Doctoral Thesis (16)
- Master's Thesis (3)
- Bachelor Thesis (1)
- Habilitation (1)
Institute
Keywords
- Finite-Elemente-Methode (3)
- Beton (2)
- Nanoverbundstruktur (2)
- Polymere (2)
- Strukturmechanik (2)
- XFEM (2)
- multiscale (2)
- nanocomposite (2)
- stochastic (2)
- 50.32 (1)
Increasing structural robustness is the goal which is of interest for structural engineering community. The partial collapse of RC buildings is subject of this dissertation. Understanding the robustness of RC buildings will guide the development of safer structures against abnormal loading scenarios such as; explosions, earthquakes, fine, and/or long-term accumulation effects leading to deterioration or fatigue. Any of these may result in local immediate structural damage, that can propagate to the rest of the structure causing what is known by the disproportionate collapse.
This work handels collapse propagation through various analytical approaches which simplifies the mechanical description of damaged reinfoced concrete structures due to extreme acidental event.
The planning process in civil engineering is highly complex and not manageable in its entirety.
The state of the art decomposes complex tasks into smaller, manageable sub-tasks. Due to the close interrelatedness of the sub-tasks, it is essential to couple them. However, from a software engineering point of view, this is quite challenging to do because of the numerous incompatible software applications on the market. This study is concerned with two main objectives: The first is the generic formulation of coupling strategies in order to support engineers in the implementation and selection of adequate coupling strategies. This has been achieved by the use of a coupling pattern language combined with a four-layered, metamodel architecture, whose applicability has been performed on a real coupling scenario. The second one is the quality assessment of coupled software. This has been developed based on the evaluated schema mapping. This approach has been described using mathematical expressions derived from the set theory and graph theory by taking the various mapping patterns into account. Moreover, the coupling quality has been evaluated within the formalization process by considering the uncertainties that arise during mapping and has resulted in global quality values, which can be used by the user to assess the exchange. Finally, the applicability of the proposed approach has been shown using an engineering case study.
The initial shear modulus, Gmax, of soil is an important parameter for a variety of geotechnical design applications. This modulus is typically associated with shear strain levels about 5*10^-3% and below. The critical role of soil stiffness at small-strains in the design and analysis of geotechnical infrastructure is now widely accepted.
Gmax is a key parameter in small-strain dynamic analyses such as those to predict soil behavior or soil-structure interaction during earthquake, explosions, machine or traffic vibration where it is necessary to know how the shear modulus degrades from its small-strain value as the level of shear strain increases. Gmax can be equally important for small-strain cyclic situations such as those caused by wind or wave loading and for small-strain static situations as well. Gmax may also be used as an indirect indication of various soil parameters, as it, in many cases, correlates well to other soil properties such as density and sample disturbance. In recent years, a technique using bender elements was developed to investigate the small-strain shear modulus Gmax.
The objective of this thesis is to study the initial shear stiffness for various sands with different void ratios, densities, grain size distribution under dry and saturated conditions, then to compare empirical equations to predict Gmax and results from other testing devices with results of bender elements from this study.
Experimentelle Untersuchung eines Verfahrens zur optimalen Positionierung von Referenzsensoren bei der experimentellen Modalanalyse mit output-only Methoden nach Brehm (2011). Untersuchung des Einflusses der Referenzsensorpositionierung, -anzahl und der Positionierung der wandernden Sensoren unter Anwendung des Stochastic-Subspace-Verfahrens zur Auswertung der output-only Messdaten.
Environmental and operational variables and their impact on structural responses have been acknowledged as one of the most important challenges for the application of the ambient vibration-based damage identification in structures. The damage detection procedures may yield poor results, if the impacts of loading and environmental conditions of the structures are not considered.
The reference-surface-based method, which is proposed in this thesis, is addressed to overcome this problem. In the proposed method, meta-models are used to take into account significant effects of the environmental and operational variables. The usage of the approximation models, allows the proposed method to simply handle multiple non-damaged variable effects simultaneously, which for other methods seems to be very complex. The input of the meta-model are the multiple non-damaged variables while the output is a damage indicator.
The reference-surface-based method diminishes the effect of the non-damaged variables to the vibration based damage detection results. Hence, the structure condition that is assessed by using ambient vibration data at any time would be more reliable. Immediate reliable information regarding the structure condition is required to quickly respond to the event, by means to take necessary actions concerning the future use or further investigation of the structures, for instance shortly after extreme events such as earthquakes.
The critical part of the proposed damage detection method is the learning phase, where the meta-models are trained by using input-output relation of observation data. Significant problems that may encounter during the learning phase are outlined and some remedies to overcome the problems are suggested.
The proposed damage identification method is applied to numerical and experimental models. In addition to the natural frequencies, wavelet energy and stochastic subspace damage indicators are used.
Nanostructured materials are extensively applied in many fields of material science for new industrial applications, particularly in the automotive, aerospace industry due to their exceptional physical and mechanical properties. Experimental testing of nanomaterials is expensive, timeconsuming,challenging and sometimes unfeasible. Therefore,computational simulations have been employed as alternative method to predict macroscopic material properties. The behavior of polymeric nanocomposites (PNCs) are highly complex.
The origins of macroscopic material properties reside in the properties and interactions taking place on finer scales. It is therefore essential to use multiscale modeling strategy to properly account for all large length and time scales associated with these material systems, which across many orders of magnitude. Numerous multiscale models of PNCs have been established, however, most of them connect only two scales. There are a few multiscale models for PNCs bridging four length scales (nano-, micro-, meso- and macro-scales). In addition, nanomaterials are stochastic in nature and the prediction of macroscopic mechanical properties are influenced by many factors such as fine-scale features. The predicted mechanical properties obtained by traditional approaches significantly deviate from the measured values in experiments due to neglecting uncertainty of material features. This discrepancy is indicated that the effective macroscopic properties of materials are highly sensitive to various sources of uncertainty, such as loading and boundary conditions and material characteristics, etc., while very few stochastic multiscale models for PNCs have been developed. Therefore, it is essential to construct PNC models within the framework of stochastic modeling and quantify the stochastic effect of the input parameters on the macroscopic mechanical properties of those materials.
This study aims to develop computational models at four length scales (nano-, micro-, meso- and macro-scales) and hierarchical upscaling approaches bridging length scales from nano- to macro-scales. A framework for uncertainty quantification (UQ) applied to predict the mechanical properties
of the PNCs in dependence of material features at different scales is studied. Sensitivity and uncertainty analysis are of great helps in quantifying the effect of input parameters, considering both main and interaction effects, on the mechanical properties of the PNCs. To achieve this major
goal, the following tasks are carried out:
At nano-scale, molecular dynamics (MD) were used to investigate deformation mechanism of glassy amorphous polyethylene (PE) in dependence of temperature and strain rate. Steered molecular dynamics (SMD)were also employed to investigate interfacial characteristic of the PNCs.
At mico-scale, we developed an atomistic-based continuum model represented by a representative volume element (RVE) in which the SWNT’s properties and the SWNT/polymer interphase are modeled at nano-scale, the surrounding polymer matrix is modeled by solid elements. Then, a two-parameter model was employed at meso-scale. A hierarchical multiscale approach has been developed to obtain the structure-property relations at one length scale and transfer the effect to the higher length
scales. In particular, we homogenized the RVE into an equivalent fiber.
The equivalent fiber was then employed in a micromechanical analysis (i.e. Mori-Tanaka model) to predict the effective macroscopic properties of the PNC. Furthermore, an averaging homogenization process was also used to obtain the effective stiffness of the PCN at meso-scale.
Stochastic modeling and uncertainty quantification consist of the following ingredients:
- Simple random sampling, Latin hypercube sampling, Sobol’ quasirandom sequences, Iman and Conover’s method (inducing correlation in Latin hypercube sampling) are employed to generate independent and dependent sample data, respectively.
- Surrogate models, such as polynomial regression, moving least squares (MLS), hybrid method combining polynomial regression and MLS, Kriging regression, and penalized spline regression, are employed as an approximation of a mechanical model. The advantage of the surrogate models is the high computational efficiency and robust as they can be constructed from a limited amount of available data.
- Global sensitivity analysis (SA) methods, such as variance-based methods for models with independent and dependent input parameters, Fourier-based techniques for performing variance-based methods and partial derivatives, elementary effects in the context of local SA, are used to quantify the effects of input parameters and their interactions on the mechanical properties of the PNCs. A bootstrap technique is used to assess the robustness of the global SA methods with respect to their performance.
In addition, the probability distribution of mechanical properties are determined by using the probability plot method. The upper and lower bounds of the predicted Young’s modulus according to 95 % prediction intervals were provided.
The above-mentioned methods study on the behaviour of intact materials. Novel numerical methods such as a node-based smoothed extended finite element method (NS-XFEM) and an edge-based smoothed phantom node method (ES-Phantom node) were developed for fracture problems. These methods can be used to account for crack at macro-scale for future works. The predicted mechanical properties were validated and verified. They show good agreement with previous experimental and simulations results.
The focus of the thesis is to process measurements acquired from a continuous
monitoring system at a railway bridge. Temperature, strain and ambient vibration
records are analysed and two main directions of investigation are pursued.
The first and the most demanding task is to develop processing routines able to extract modal parameters from ambient vibration measurements. For this purpose, reliable experimental models are achieved on the basis of a stochastic system identification(SSI) procedure. A fully automated algorithm based on a three-stage clustering is implemented to perform a modal parameter estimation for every single measurement. After selecting a baseline of modal parameters, the evolution of eigenfrequencies is
studied and correlated to environmental and operational factors.
The second aspect deals with the structural response to passing trains. Corresponding
triggered records of strain and temperature are processed and their assessment is
accomplished using the average strains induced by each train as the reference parameter.
Three influences due to speed, temperature and loads are distinguished and treated individually. An attempt to estimate the maximum response variation due to each factor is also carried out.
Encapsulation-based self-healing concrete (SHC) is the most promising technique for providing a self-healing mechanism to concrete. This is due to its capacity to heal fractures effectively without human interventions, extending the operational life and lowering maintenance costs. The healing mechanism is created by embedding capsules containing the healing agent inside the concrete. The healing agent will be released once the capsules are fractured and the healing occurs in the vicinity of the damaged part. The healing efficiency of the SHC is still not clear and depends on several factors; in the case of microcapsules SHC the fracture of microcapsules is the most important aspect to release the healing agents and hence heal the cracks. This study contributes to verifying the healing efficiency of SHC and the fracture mechanism of the microcapsules. Extended finite element method (XFEM) is a flexible, and powerful discrete crack method that allows crack propagation without the requirement for re-meshing and has been shown high accuracy for modeling fracture in concrete. In this thesis, a computational fracture modeling approach of Encapsulation-based SHC is proposed based on the XFEM and cohesive surface technique (CS) to study the healing efficiency and the potential of fracture and debonding of the microcapsules or the solidified healing agents from the concrete matrix as well. The concrete matrix and a microcapsule shell both are modeled by the XFEM and combined together by CS. The effects of the healed-crack length, the interfacial fracture properties, and microcapsule size on the load carrying capability and fracture pattern of the SHC have been studied. The obtained results are compared to those obtained from the zero thickness cohesive element approach to demonstrate the significant accuracy and the validity of the proposed simulation. The present fracture simulation is developed to study the influence of the capsular clustering on the fracture mechanism by varying the contact surface area of the CS between the microcapsule shell and the concrete matrix. The proposed fracture simulation is expanded to 3D simulations to validate the 2D computational simulations and to estimate the accuracy difference ratio between 2D and 3D simulations. In addition, a proposed design method is developed to design the size of the microcapsules consideration of a sufficient volume of healing agent to heal the expected crack width. This method is based on the configuration of the unit cell (UC), Representative Volume Element (RVE), Periodic Boundary Conditions (PBC), and associated them to the volume fraction (Vf) and the crack width as variables. The proposed microcapsule design is verified through computational fracture simulations.
Piezoelectric materials are used in several applications as sensors and actuators where they experience high stress and electric field concentrations as a result of which they may fail due to fracture. Though there are many analytical and experimental works on piezoelectric fracture mechanics. There are very few studies about damage detection, which is an interesting way to prevent the failure of these ceramics.
An iterative method to treat the inverse problem of detecting cracks and voids in piezoelectric structures is proposed. Extended finite element method (XFEM) is employed for solving the inverse problem as it allows the use of a single regular mesh for large number of iterations with different flaw geometries.
Firstly, minimization of cost function is performed by Multilevel Coordinate Search (MCS) method. The XFEM-MCS methodology is applied to two dimensional electromechanical problems where flaws considered are straight cracks and elliptical voids. Then a numerical method based on combination of classical shape derivative and level set method for front propagation used in structural optimization is utilized to minimize the cost function. The results obtained show that the XFEM-level set methodology is effectively able to determine the number of voids in a piezoelectric structure and its corresponding locations.
The XFEM-level set methodology is improved to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure. The material interfaces are implicitly represented by level sets which are identified by applying regularisation using total variation penalty terms. The formulation is presented for three dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material subdomains in the presence of higher noise levels.
Piezoelectric nanostructures exhibit size dependent properties because of surface elasticity and surface piezoelectricity. Initially a study to understand the influence of surface elasticity on optimization of nano elastic beams is performed. The boundary of the nano structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target
displacement, are chosen for the numerical examples. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams.
Finally a conventional cantilever energy harvester with a piezoelectric nano layer is analysed. The presence of surface piezoelectricity in nano beams and nano plates leads to increase in electromechanical coupling coefficient. Topology optimization of these piezoelectric structures in an energy harvesting device to further increase energy conversion using appropriately modified XFEM-level set algorithm is performed .
Matrix-free voxel-based finite element method for materials with heterogeneous microstructures
(2019)
Modern image detection techniques such as micro computer tomography
(μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis.
However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm.
This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained.