56.11 Baukonstruktion
Refine
Document Type
- Doctoral Thesis (9)
- Master's Thesis (6)
- Article (3)
- Conference Proceeding (3)
Institute
- Institut für Konstruktiven Ingenieurbau (IKI) (3)
- Professur Tragwerkslehre (3)
- Junior-Professur Komplexe Tragwerke (2)
- Professur Massivbau I (2)
- Professur Massivbau II (2)
- Institut für Strukturmechanik (ISM) (1)
- Professur Allgemeine Baustoffkunde (1)
- Professur Baumechanik (1)
- Professur Baustatik und Bauteilfestigkeit (1)
- Professur Betriebswirtschaftslehre im Bauwesen (1)
Keywords
- Ingenieurbau (3)
- Optimierung (3)
- Structural Engineering (3)
- Ingenieurwissenschaften (2)
- Konstruktion (2)
- Nichtlineare Berechnung (2)
- Proceedings (2)
- Sommerkurs (2)
- Tensegrity (2)
- proceedings (2)
The characteristic values of climatic actions in current structural design codes are based on a specified probability of exceedance during the design working life of a structure. These values are traditionally determined from the past observation data under a stationary climate assumption. However, this assumption becomes invalid in the context of climate change, where the frequency and intensity of climatic extremes varies with respect to time. This paper presents a methodology to calculate the non-stationary characteristic values using state of the art climate model projections. The non-stationary characteristic values are calculated in compliance with the requirements of structural design codes by forming quasi-stationary windows of the entire bias-corrected climate model data. Three approaches for the calculation of non-stationary characteristic values considering the design working life of a structure are compared and their consequences on exceedance probability are discussed.
Operator Calculus Approach to Comparison of Elasticity Models for Modelling of Masonry Structures
(2022)
The solution of any engineering problem starts with a modelling process aimed at formulating a mathematical model, which must describe the problem under consideration with sufficient precision. Because of heterogeneity of modern engineering applications, mathematical modelling scatters nowadays from incredibly precise micro- and even nano-modelling of materials to macro-modelling, which is more appropriate for practical engineering computations. In the field of masonry structures, a macro-model of the material can be constructed based on various elasticity theories, such as classical elasticity, micropolar elasticity and Cosserat elasticity. Evidently, a different macro-behaviour is expected depending on the specific theory used in the background. Although there have been several theoretical studies of different elasticity theories in recent years, there is still a lack of understanding of how modelling assumptions of different elasticity theories influence the modelling results of masonry structures. Therefore, a rigorous approach to comparison of different three-dimensional elasticity models based on quaternionic operator calculus is proposed in this paper. In this way, three elasticity models are described and spatial boundary value problems for these models are discussed. In particular, explicit representation formulae for their solutions are constructed. After that, by using these representation formulae, explicit estimates for the solutions obtained by different elasticity theories are obtained. Finally, several numerical examples are presented, which indicate a practical difference in the solutions.
Institute of Structural Engineering, Institute of Structural Mechanics, as well as Institute for Computing, Mathematics and Physics in Civil Engineering at the faculty of civil engineering at the Bauhaus-Universität Weimar presented special topics of structural engineering to highlight the broad spectrum of civil engineering in the field of modeling and simulation.
The summer course sought to impart knowledge and to combine research with a practical context, through a challenging and demanding series of lectures, seminars and project work. Participating students were enabled to deal with advanced methods and its practical application.
The extraordinary format of the interdisciplinary summer school offers the opportunity to study advanced developments of numerical methods and sophisticated modelling techniques in different disciplines of civil engineering for foreign and domestic students, which go far beyond traditional graduate courses.
The proceedings at hand are the result from the Bauhaus Summer School course: Forecast Engineering held at the Bauhaus-Universität Weimar, 2018. It summarizes the results of the conducted project work, provides the abstracts/papers of the contributions by the participants, as well as impressions from the accompanying programme and organized cultural activities.
The design of engineering structures takes place today and in the past on the basis of static calculations. The consideration of uncertainties in the model quality becomes more and more important with the development of new construction methods and design requirements. In addition to the traditional forced-based approaches, experiences and observations about the deformation behavior of components and the overall structure under different exposure conditions allow the introduction of novel detection and evaluation criteria.
The proceedings at hand are the result from the Bauhaus Summer School Course: Forecast Engineering held at the Bauhaus-Universität Weimar, 2017. It summarizes the results of the conducted project work, provides the abstracts of the contributions by the participants, as well as impressions from the accompanying programme and organized cultural activities.
The special character of this course is in the combination of basic disciplines of structural engineering with applied research projects in the areas of steel and reinforced concrete structures, earthquake and wind engineering as well as informatics and linking them to mathematical methods and modern tools of visualization. Its innovative character results from the ambitious engineering tasks and advanced
modeling demands.
The proceedings at hand are the result of the International Master Course Module: "Nonlinear Analysis of Structures: Wind Induced Vibrations" held at the Faculty of Civil Engineering at Bauhaus-University Weimar, Germany in the summer semester 2019 (April - August). This material summarizes the results of the project work done throughout the semester, provides an overview of the topic, as well as impressions from the accompanying programme.
Wind Engineering is a particular field of Civil Engineering that evaluates the resistance of structures caused by wind loads. Bridges, high-rise buildings, chimneys and telecommunication towers might be susceptible to wind vibrations due to their increased flexibility, therefore a special design is carried for this aspect. Advancement in technology and scientific studies permit us doing research at small scale for more accurate analyses. Therefore scaled models of real structures are built and tested for various construction scenarios. These models are placed in wind tunnels where experiments are conducted to determine parameters such as: critical wind speeds for bridge decks, static wind coefficients and forces for buildings or bridges. The objective of the course was to offer insight to the students into the assessment of long-span cable-supported bridges and high-rise buildings under wind excitation. The participating students worked in interdisciplinary teams to increase their knowledge in the understanding and influences on the behaviour of wind-sensitive structures.
A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks
(2019)
Reliable modelling in structural engineering is crucial for the serviceability and safety of structures. A huge variety of aerodynamic models for aeroelastic analyses of bridges poses natural questions on their complexity and thus, quality. Moreover, a direct comparison of aerodynamic models is typically either not possible or senseless, as the models can be based on very different physical assumptions. Therefore, to address the question of principal comparability and complexity of models, a more abstract approach, accounting for the effect of basic physical assumptions, is necessary.
This paper presents an application of a recently introduced category theory-based modelling approach to a diverse set of models from bridge aerodynamics. Initially, the categorical approach is extended to allow an adequate description of aerodynamic models. Complexity of the selected aerodynamic models is evaluated, based on which model comparability is established. Finally, the utility of the approach for model comparison and characterisation is demonstrated on an illustrative example from bridge aeroelasticity. The outcome of this study is intended to serve as an alternative framework for model comparison and impact future model assessment studies of mathematical models for engineering applications.
Der vorliegende Text beschreibt die intensive Erforschung von Wabenplatten aus Papierwerkstoffen, die durch Faltprozesse neue räumliche Zustände einnehmen können und somit ihr ursprüngliches Anwendungsspektrum erweitern. Die gezeigten Lösungsansätze bewegen sich dabei im Spannungsfeld von Architektur und Ingenieurbau, denn die gefalteten Bauteile sind nicht nur äußerst tragfähig sondern besitzen auch eine ästhetische Form. Die entwickelten Verfahren und Konstruktionen werden auf einem hohen architektonischen Niveau präsentiert und mit einfachen ingenieurtechnischen Methoden verifiziert. Zur Lösungsfindung werden geometrische Verfahren ebenso angewendet wie konstruktive Faustformeln und Recherchen aus Architektur und Forschung.
Der Fokus der Arbeit liegt auf der Untersuchung von Faltungen in Wabenplatten. Während der Auseinandersetzung mit der Thematik erschienen jedoch viele weitere Aspekte als sehr interessant und bearbeitungswürdig. Als theoretische Grundlage dieser Arbeit werden deshalb die geschichtliche Entwicklung und die gesellschaftliche Bedeutung von Papier und Papierwerkstoffen analysiert und deren Produktionsprozesse beleuchtet. Diese Vorgehensweise ermöglicht eine Einordnung des Potentials und der Bedeutung des Werkstoffs Papier. Der Kontext der Arbeit wird dadurch gestärkt und führt zu interessanten zukünftigen Forschungsansätzen.
Intensive Untersuchungen widmen sich der geometrischen Bestimmung von Faltungen in Wabenplatten aus Papierwerkstoffen sowie deren Manifestation als konstruktive Bauteile. Auch die statischen Eigenschaften der Elemente und ihr Konstruktionspotential werden erforscht und aufbereitet. Wichtige Impulse aus Forschung und Technik fließen in die Recherche der Arbeit ein und erlauben die Verortung der Ergebnisse im architektonischen Kontext. Versuchsreihen und Materialstudien an Prototypen belegen die Ergebnisse virtueller und rechnerischer Studien. Konzepte zur parametrischen Berechnung und Visualisierung der Forschungsergebnisse werden präsentiert und zeigen zukunftsfähige Planungshilfen für die Industrie auf. Etliche Testreihen zu unterschiedlichsten Abdichtungskonzepten führen zur Realisierung eines sehenswerten Experimentalbaus. Er erlaubt die dauerhafte Untersuchung der entwickelten Bauteile unter realistischen Bedingungen und bestätigt deren Leistungsfähigkeit. Dadurch wird nicht nur ein dauerhaftes Monitoring und eine Evaluierung der Leistungsdaten möglich sondern es wird auch der sichtbare Beweis erbracht, dass mit Papierwerkstoffen effiziente und hochwertige Architekturen zu realisieren sind, welche das enorme gestalterische Potential von gefalteten Wabenplatten ausnutzen.
Alkali-silica reaction causes major problems in concrete structures due to the rapidity of its deformation which leads to the serviceability limit of the structure being reached well before its time. Factors that affect ASR vary greatly, including alkali and silica content, relative humidity, temperature and porosity of the cementitious matrix,all these making it a very complex phenomenon to consider explicitly. With this in mind, the finite element technique was used to build models and generate expansive pressures and damage propagation due to ASR under the influence of thermo-hygrochemoelastic loading. Since ASR initializes in the mesoscopic regions of the concrete,
the accumulative effects of its expansion escalates onto the macroscale level with the development of web cracking on the concrete surface, hence solution of the damage model as well as simulation of the ASR phenomenon at both the macroscale and mesoscale levels have been performed. The macroscale model realizes the effects of ASR expansion as a whole and shows how it develops under the influence of moisture, thermal and mechanical loading. Results of the macroscale modeling are
smeared throughout the structure and are sufficient to show how damage due to ASR expansion orientates. As opposed to the mesoscale model, the heterogeneity of the model shows us how difference in material properties between aggregates and the cementitious matrix facilitates ASR expansion. With both these models, the ASR phenomenon under influence of thermo-chemo-hygro-mechanical loading can be better understood.
In der vorliegenden Arbeit werden auf Basis des Tensegrity-Konzeptes Strukturen entwickelt und vorgestellt, welche durch einen signifikanten Steifigkeitszuwachs in der Lage sind, die Anforderungen an die Gebrauchstauglichkeit von Tragwerken zu erfüllen.
Selbstverankerte Strukturen mit aufgelösten Druckstäben werden als Seil-Stab-Systeme bezeichnet und sind alleiniger Gegenstand aller angestellten Betrachtungen.
Tensegrity-Strukturen sollen eine Untergruppe der Seil-Stab-Systeme darstellen, deren symptomatische Eigenschaft eine sich im Tensegrity-Zustand befindliche Geometrie ist.
Einer Definition des Tensegrity-Zustandes folgt ein Überblick über die zur Untersuchung von Seil-Stab-Systemen notwendigen Berechnungsalgorithmen.
Der Kern der Arbeit beschäftigt sich zunächst mit dem Einfluss der Geometrie auf die Empfindlichkeit von Seil-Stab-Systemen gegenüber unvermeidlichen Herstellungstoleranzen sowie dem Einfluss von Topologie, Vorspannung, lokaler Steifigkeit der Elemente und Geometrie auf die Steifigkeit dieser Systeme.
Darauf aufbauend wird eine Möglichkeit gezeigt, die Steifigkeit von beweglichen Seil-
Stab-Systemen merklich zu erhöhen, ohne die Strukturen durch zusätzliche Elemente oder Verbindungen optisch zu verändern.
Der zu erzielende Steifigkeitszuwachs wird mittels Vergleichrechnungen und durchgeführten Belastungsversuchen verifiziert.
Das wohltemperierte Netz - Zum Konstruktiven Entwurf direkt verglaster Stabnetze auf Freiformflächen
(2008)
Direkt verglaste Stabnetze repräsentieren ein strukturell und geometrisch hochgradig variables Prinzip zur Realisierung transparenter architektonischer Freiformflächen. Dieses beinhaltet die funktionale Entkopplung der Fassadenkonstruktion in ein tragendes Stabnetz und eine hüllende Verglasung. Ein formal universales, dimensional variables Knotenelement bildet dabei das Herzstück der Konstruktion. Die vorliegende Arbeit widmet sich dem Konstruktiven Entwurf frei geformter, direkt verglaster Stabnetze. Dieser umfasst schwerpunktmäßig die formale und dimensionale Konzeptionierung der Knotenelemente. Er wird maßgeblich beeinflusst von der Dimensionalitätsdifferenz zwischen dem formbeschreibenden Flächennetz aus nulldimensionalen Knoten und eindimensionalen Kanten sowie dem Stabnetz aus dreidimensionalen Knoten bzw. Stäben. Darüber hinaus definieren das freiformbedingte Erfordernis einer unikaten Ausrichtung der Stabnetzelemente sowie die materialspezifische Anforderung einer zwängungsfreien Lagerung der Gläser weitere dominante Einflussgrößen im Entwurfsprozess. In der Arbeit werden zunächst die geometrischen und konstruktiven Randbedingungen des Konstruktiven Stabnetzentwurfs dargestellt. Darauf aufbauend wird ein Zylinder-Achsen- Modell entwickelt, welches die unikate lokale Situation am Knoten unter Berücksichtigung einer variablen Ausrichtung der Stabnetzelemente sowie beliebig polygonaler Stabquerschnitte abstrahiert. Die Modellierung ermöglicht eine Bewertung des knotenbezogenen Status unter konstruktiven und mechanischen Aspekten. Sie bildet somit die Grundlage für eine Konstruktive Optimierung direkt verglaster Stabnetze. Mit Hilfe des Zylinder-Achsen-Modells werden alle bisher bekannten Prinzipien zur Ausrichtung der Stabnetzelemente analysiert. Dabei offenbaren sich verschiedene Defizite. Zu deren Überwindung werden drei neuartige Lösungsansätze entwickelt. Eine alternative Methode dient folglich zur Bestimmung einer konstruktiv optimierten Ausrichtung der Knotenachse. Ein zweiter Ansatz zielt auf die Definition einer neuartigen Stablängsbezugsachse, welche unabhängig von der Flächenkrümmung eine zwängungsfreie Lagerung der Glaselemente gewährleistet. Schließlich ermöglicht das dritte innovative Prinzip die konsistente Bestimmung einer Stabquerachse auch bei nicht ebenen Viereckmaschen.