### Refine

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (82) (remove)

#### Keywords

- Angewandte Mathematik (82) (remove)

We present recent developments of adaptive wavelet solvers for elliptic eigenvalue problems. We describe the underlying abstract iteration scheme of the preconditioned perturbed iteration. We apply the iteration to a simple model problem in order to identify the main ideas which a numerical realization of the abstract scheme is based upon. This indicates how these concepts carry over to wavelet discretizations. Finally we present numerical results for the Poisson eigenvalue problem on an L-shaped domain.

Nodal integration of finite elements has been investigated recently. Compared with full integration it shows better convergence when applied to incompressible media, allows easier remeshing and highly reduces the number of material evaluation points thus improving efficiency. Furthermore, understanding it may help to create new integration schemes in meshless methods as well. The new integration technique requires a nodally averaged deformation gradient. For the tetrahedral element it is possible to formulate a nodal strain which passes the patch test. On the downside, it introduces non-physical low energy modes. Most of these "spurious modes" are local deformation maps of neighbouring elements. Present stabilization schemes rely on adding a stabilizing potential to the strain energy. The stabilization is discussed within this article. Its drawbacks are easily identified within numerical experiments: Nonlinear material laws are not well represented. Plastic strains may often be underestimated. Geometrically nonlinear stabilization greatly reduces computational efficiency. The article reinterpretes nodal integration in terms of imposing a nonconforming C0-continuous strain field on the structure. By doing so, the origins of the spurious modes are discussed and two methods are presented that solve this problem. First, a geometric constraint is formulated and solved using a mixed formulation of Hu-Washizu type. This assumption leads to a consistent representation of the strain energy while eliminating spurious modes. The solution is exact, but only of theoretical interest since it produces global support. Second, an integration scheme is presented that approximates the stabilization criterion. The latter leads to a highly efficient scheme. It can even be extended to other finite element types such as hexahedrals. Numerical efficiency, convergence behaviour and stability of the new method is validated using linear tetrahedral and hexahedral elements.

A practical framework for generating cross correlated fields with a specified marginal distribution function, an autocorrelation function and cross correlation coefficients is presented in the paper. The contribution promotes a recent journal paper [1]. The approach relies on well known series expansion methods for simulation of a Gaussian random field. The proposed method requires all cross correlated fields over the domain to share an identical autocorrelation function and the cross correlation structure between each pair of simulated fields to be simply defined by a cross correlation coefficient. Such relations result in specific properties of eigenvectors of covariance matrices of discretized field over the domain. These properties are used to decompose the eigenproblem which must normally be solved in computing the series expansion into two smaller eigenproblems. Such decomposition represents a significant reduction of computational effort. Non-Gaussian components of a multivariate random field are proposed to be simulated via memoryless transformation of underlying Gaussian random fields for which the Nataf model is employed to modify the correlation structure. In this method, the autocorrelation structure of each field is fulfilled exactly while the cross correlation is only approximated. The associated errors can be computed before performing simulations and it is shown that the errors happen especially in the cross correlation between distant points and that they are negligibly small in practical situations.

What is nowadays called (classic) Clifford analysis consists in the establishment of a function theory for functions belonging to the kernel of the Dirac operator. While such functions can very well describe problems of a particle with internal SU(2)-symmetries, higher order symmetries are beyond this theory. Although many modifications (such as Yang-Mills theory) were suggested over the years they could not address the principal problem, the need of a n-fold factorization of the d’Alembert operator. In this paper we present the basic tools of a fractional function theory in higher dimensions, for the transport operator (alpha = 1/2 ), by means of a fractional correspondence to the Weyl relations via fractional Riemann-Liouville derivatives. A Fischer decomposition, fractional Euler and Gamma operators, monogenic projection, and basic fractional homogeneous powers are constructed.

The article presents analysis of stress distribution in the reinforced concrete support beam bracket which is a component of prefabricated reinforced concrete building. The building structure is spatial frame where dilatations were applied. The proper stiffness of its structure is provided by frames with stiff joints, monolithic lift shifts and staircases. The prefabricated slab floors are supported by beam shelves which are shaped as inverted letter ‘T’. Beams are supported by the column brackets. In order to lower the storey height and fulfill the architectural demands at the same time, the designer lowered the height of beam at the support zone. The analyzed case refers to the bracket zone where the slant crack. on the support beam bracket was observed. It could appear as a result of overcrossing of allowable tension stresses in reinforced concrete, in the bracket zone. It should be noted that the construction solution applied, i.e. concurrent support of the “undercut” beam on the column bracket causes local concentration of stresses in the undercut zone where the strongest transverse forces and tangent stresses occur concurrently. Some additional rectangular stresses being a result of placing the slab floors on the lower part of beam shelves sum up with those described above.

Since the 90-ties the Pascal matrix, its generalizations and applications have been in the focus of a great amount of publications. As it is well known, the Pascal matrix, the symmetric Pascal matrix and other special matrices of Pascal type play an important role in many scientific areas, among them Numerical Analysis, Combinatorics, Number Theory, Probability, Image processing, Sinal processing, Electrical engineering, etc. We present a unified approach to matrix representations of special polynomials in several hypercomplex variables (new Bernoulli, Euler etc. polynomials), extending results of H. Malonek, G.Tomaz: Bernoulli polynomials and Pascal matrices in the context of Clifford Analysis, Discrete Appl. Math. 157(4)(2009) 838-847. The hypercomplex version of a new Pascal matrix with block structure, which resembles the ordinary one for polynomials of one variable will be discussed in detail.

This paper deals with the modelling and the analysis of masonry vaults. Numerical FEM analyses are performed using LUSAS code. Two vault typologies are analysed (barrel and cross-ribbed vaults) parametrically varying geometrical proportions and constraints. The proposed model and the developed numerical procedure are implemented in a computer analysis. Numerical applications are developed to assess the model effectiveness and the efficiency of the numerical procedure. The main object of the present paper is the development of a computational procedure which allows to define 3D structural behaviour of masonry vaults. For each investigated example, the homogenized limit analysis approach has been employed to predict ultimate load and failure mechanisms. Finally, both a mesh dependence study and a sensitivity analysis are reported. Sensitivity analysis is conducted varying in a wide range mortar tensile strength and mortar friction angle with the aim of investigating the influence of the mechanical properties of joints on collapse load and failure mechanisms. The proposed computer model is validated by a comparison with experimental results available in the literature.

A concept of non-commutative Galois extension is introduced and binary and ternary extensions are chosen. Non-commutative Galois extensions of Nonion algebra and su(3) are constructed. Then ternary and binary Clifford analysis are introduced for non-commutative Galois extensions and the corresponding Dirac operators are associated.

The sizing of simple resonators like guitar strings or laser mirrors is directly connected to the wavelength and represents no complex optimisation problem. This is not the case with liquid-filled acoustic resonators of non-trivial geometries, where several masses and stiffnesses of the structure and the fluid have to fit together. This creates a scenario of many competing and interacting resonances varying in relative strength and frequency when design parameters change. Hence, the resonator design involves a parameter-tuning problem with many local optima. As its solution evolutionary algorithms (EA) coupled to a forced-harmonic FE simulation are presented. A new hybrid EA is proposed and compared to two state-of-theart EAs based on selected test problems. The motivating background is the search for better resonators suitable for sonofusion experiments where extreme states of matter are sought in collapsing cavitation bubbles.

Information technology plays a key role in the everyday operation of buildings and campuses. Many proprietary technologies and methodologies can assist in effective Building Performance Monitoring (BPM) and efficient managing of building resources. The integration of related tools like energy simulator packages, facility, energy and building management systems, and enterprise resource planning systems is of benefit to BPM. However, the complexity to integrating such domain specific systems prevents their common usage. Service Oriented Architecture (SOA) has been deployed successfully in many large multinational companies to create integrated and flexible software systems, but so far this methodology has not been applied broadly to the field of BPM. This paper envisions that SOA provides an effective integration framework for BPM. Service oriented architecture for the ITOBO framework for sustainable and optimised building operation is proposed and an implementation for a building performance monitoring system is introduced.

The paper is devoted to a study of properties of homogeneous solutions of massless field equation in higher dimensions. We first treat the case of dimension 4. Here we use the two-component spinor language (developed for purposes of general relativity). We describe how are massless field operators related to a higher spin analogues of the de Rham sequence - the so called Bernstein-Gel'fand-Gel'fand (BGG) complexes - and how are they related to the twisted Dirac operators. Then we study similar question in higher (even) dimensions. Here we have to use more tools from representation theory of the orthogonal group. We recall the definition of massless field equations in higher dimensions and relations to higher dimensional conformal BGG complexes. Then we discuss properties of homogeneous solutions of massless field equation. Using some recent techniques for decomposition of tensor products of irreducible $Spin(m)$-modules, we are able to add some new results on a structure of the spaces of homogenous solutions of massless field equations. In particular, we show that the kernel of the massless field equation in a given homogeneity contains at least on specific irreducible submodule.

We consider a structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed to be inexact but bounded and are represented by intervals. Such uncertainty may typically arise from imprecision during the process of manufacturing or construction, or round-off errors. In this case the application of the finite element method results in a system of linear equations with numerous interval parameters which cannot be solved conventionally. Applying a suitable variable substitution, an iteration method for the solution of a parametric system of linear equations is firstly employed to obtain initial bounds on the node displacements. Thereafter, an interval tightening (pruning) technique is applied, firstly on the element forces and secondly on the node displacements, in order to obtain tight guaranteed enclosures for the interval solutions for the forces and displacements.

Due to increasing numbers of wind energy converters, the accurate assessment of the lifespan of their structural parts and the entire converter system is becoming more and more paramount. Lifespan-oriented design, inspections and remedial maintenance are challenging because of their complex dynamic behavior. Wind energy converters are subjected to stochastic turbulent wind loading causing corresponding stochastic structural response and vibrations associated with an extreme number of stress cycles (up to 109 according to the rotation of the blades). Currently, wind energy converters are constructed for a service life of about 20 years. However, this estimation is more or less made by rule of thumb and not backed by profound scientific analyses or accurate simulations. By contrast, modern structural health monitoring systems allow an improved identification of deteriorations and, thereupon, to drastically advance the lifespan assessment of wind energy converters. In particular, monitoring systems based on artificial intelligence techniques represent a promising approach towards cost-efficient and reliable real-time monitoring. Therefore, an innovative real-time structural health monitoring concept based on software agents is introduced in this contribution. For a short time, this concept is also turned into a real-world monitoring system developed in a DFG joint research project in the authors’ institute at the Ruhr-University Bochum. In this paper, primarily the agent-based development, implementation and application of the monitoring system is addressed, focusing on the real-time monitoring tasks in the deserved detail.

The Bernstein polynomials are used for important applications in many branches of Mathematics and the other sciences, for instance, approximation theory, probability theory, statistic theory, num- ber theory, the solution of the di¤erential equations, numerical analysis, constructing Bezier curves, q-calculus, operator theory and applications in computer graphics. The Bernstein polynomials are used to construct Bezier curves. Bezier was an engineer with the Renault car company and set out in the early 1960’s to develop a curve formulation which would lend itself to shape design. Engineers may …nd it most understandable to think of Bezier curves in terms of the center of mass of a set of point masses. Therefore, in this paper, we study on generating functions and functional equations for these polynomials. By applying these functions, we investigate interpolation function and many properties of these polynomials.

In order to model and simulate collapses of large scale complex structures, a user-friendly and high performance software system is essential. Because a large number of simulation experiments have to be performed, therefore, next to an appropriate simulation model and high performance computing, efficient interactive control and visualization capabilities of model parameters and simulation results are crucial. To this respect, this contribution is concerned with advancements of the software system CADCE (Computer Aided Demolition using Controlled Explosives) that is extended under particular consideration of computational steering concepts. Thereby, focus is placed on problems and solutions for the collapse simulation of real world large scale complex structures. The simulation model applied is based on a multilevel approach embedding finite element models on a local as well as a near field length scale, and multibody models on a global scale. Within the global level simulation, relevant effects of the local and the near field scale, such as fracture and failure processes of the reinforced concrete parts, are approximated by means of tailor-made multibody subsystems. These subsystems employ force elements representing nonlinear material characteristics in terms of force/displacement relationships that, in advance, are determined by finite element analysis. In particular, enhancements concerning the efficiency of the multibody model and improvements of the user interaction are presented that are crucial for the capability of the computational steering. Some scenarios of collapse simulations of real world large scale structures demonstrate the implementation of the above mentioned approaches within the computational steering.

CRITICAL STRESS ASSESSMENT IN ANGLE TO GUSSET PLATE BOLTED CONNECTION BY SIMPLIFIED FEM MODELLING
(2010)

Simplified modelling of friction grip bolted connections of steel member – to – gusset plate is often applied in engineering practise. The paper deals with the simplification of pre-tensioned bolt model and simplification of load transfer within connection. Influence on normal strain (and thus stress) distribution at critical cross-section is investigated. Laboratory testing of single-angle or double-angle members – to – gusset plates bolted connections were taken as basis for numerical analysis. FE models were created using 1D and 2D elements. Angles and gusset plates were modelled with shell elements. Two methods of modelling of friction grip bolting were considered: bolt-regarding approach with 1D element systems modelling bolts and two variants of bolt-disregarding approach with special constraints over some part of member and gusset plate surfaces in contact: a) constraints over whole area of contact, b) constraints over the area around each bolt shank (“partially tied”). Modelling of friction grip bolted connections using simplified bolt modelling may be effective, especially in the case of analysis concerning elastic range only. In such a case disregarding bolts and replacing them with “partially tied” modelling seems to be more attractive. It is less time-consuming and provides results of similar accuracy in comparison to analysis utilizing simplified bolt modelling.

The uncertainty existing in the construction industry is bigger than in other industries. Consequently, most construction projects do not go totally as planned. The project management plan needs therefore to be adapted repeatedly within the project lifecycle to suit the actual project conditions. Generally, the risks of change in the project management plan are difficult to be identified in advance, especially if these risks are caused by unexpected events such as human errors or changes in the client preferences. The knowledge acquired from different resources is essential to identify the probable deviations as well as to find proper solutions to the faced change risks. Hence, it is necessary to have a knowledge base that contains known solutions for the common exceptional cases that may cause changes in each construction domain. The ongoing research work presented in this paper uses the process modeling technique of Event-driven Process Chains to describe different patterns of structure changes in the schedule networks. This results in several so called “change templates”. Under each template different types of change risk/ response pairs can be categorized and stored in a knowledge base. This knowledge base is described as an ontology model populated with reference construction process data. The implementation of the developed approach can be seen as an iterative scheduling cycle that will be repeated within the project lifecycle as new change risks surface. This can help to check the availability of ready solutions in the knowledge base for the situation at hand. Moreover, if the solution is adopted, CPSP, “Change Project Schedule Plan „a prototype developed for the purpose of this research work, will be used to make the needed structure changes of the schedule network automatically based on the change template. What-If scenarios can be implemented using the CPSP prototype in the planning phase to study the effect of specific situations without endangering the success of the project objectives. Hence, better designed and more maintainable project schedules can be achieved.

Quality is one of the most important properties of a product. Providing the optimal quality can reduce costs for rework, scrap, recall or even legal actions while satisfying customers demand for reliability. The aim is to achieve ``built-in'' quality within product development process (PDP). The common approach therefore is the robust design optimization (RDO). It uses stochastic values as constraint and/or objective to obtain a robust and reliable optimal design. In classical approaches the effort required for stochastic analysis multiplies with the complexity of the optimization algorithm. The suggested approach shows that it is possible to reduce this effort enormously by using previously obtained data. Therefore the support point set of an underlying metamodel is filled iteratively during ongoing optimization in regions of interest if this is necessary. In a simple example, it will be shown that this is possible without significant loss of accuracy.

BAUHAUS ISOMETRY AND FIELDS
(2012)

While integration increases by networking, segregation strides ahead too. Most of us fixate our mind on special topics. Yet we are relying on our intuition too. We are sometimes waiting for the inflow of new ideas or valuable information that we hold in high esteem, although we are not entirely conscious of its origin. We may even say the most precious intuitions are rooting in deep subconscious, collective layers of the mind. Take as a simple example the emergence of orientation in paleolithic events and its relation to the dihedral symmetry of the compass. Consider also the extension of this algebraic matter into the operational structures of the mind on the one hand and into the algebra of geometry, Clifford algebra as we use to call it today, on the other. Culture and mind, and even the individual act of creation may be connected with transient events that are subconscious and inaccessible to cognition in principle. Other events causative for our work may be merely invisible too us, though in principle they should turn out attainable. In this case we are just ignorant of the whole creative process. Sometimes we begin to use unusual tools or turn into handicraft enthusiasts. Then our small institutes turn into workshops and factories. All this is indeed joining with the Bauhaus and its spirit. We shall go together into this, and we shall present a record of this session.