### Refine

The article presents analysis of stress distribution in the reinforced concrete support beam bracket which is a component of prefabricated reinforced concrete building. The building structure is spatial frame where dilatations were applied. The proper stiffness of its structure is provided by frames with stiff joints, monolithic lift shifts and staircases. The prefabricated slab floors are supported by beam shelves which are shaped as inverted letter ‘T’. Beams are supported by the column brackets. In order to lower the storey height and fulfill the architectural demands at the same time, the designer lowered the height of beam at the support zone. The analyzed case refers to the bracket zone where the slant crack. on the support beam bracket was observed. It could appear as a result of overcrossing of allowable tension stresses in reinforced concrete, in the bracket zone. It should be noted that the construction solution applied, i.e. concurrent support of the “undercut” beam on the column bracket causes local concentration of stresses in the undercut zone where the strongest transverse forces and tangent stresses occur concurrently. Some additional rectangular stresses being a result of placing the slab floors on the lower part of beam shelves sum up with those described above.

We present the way of calculation of displacement in the bent reinforced concrete bar elements where rearrangement of internal forces and plastic hinge occurred. The described solution is based on prof. Borcz’s mathematical model. It directly takes into consideration the effects connected with the occurrence of plastic hinge, such as for example a crack, by means of a differential equation of axis of the bent reinforced concrete beam. The EN Eurocode 2 makes it possible to consider the influence of plastic hinge on the values of the reinforced concrete structures. This influence can also be assumed using other analytical methods. However, the results obtained by the application of Eurocode 2 are higher from those received in testing. Just comparably big error level occurs when calculations are made by means of Borcz’s method, but in the latter case, the results depend on the assumptions made beforehand. This method makes it possible to apply the experimental results using parameters r1 i r0. When the experimental results are taken into account, one could observe the compatibility between the calculations and actual deflections of the structure.