• search hit 43 of 105
Back to Result List

UNCERTAINTY QUANTIFICATION IN CYCLIC CREEP PREDICTION OF CONCRETE

  • This paper presents a methodology for uncertainty quantification in cyclic creep analysis. Several models- , namely BP model, Whaley and Neville model, modified MC90 for cyclic loading and modified Hyperbolic function for cyclic loading are used for uncertainty quantification. Three types of uncertainty are included in Uncertainty Quantification (UQ): (i) natural variability in loading andThis paper presents a methodology for uncertainty quantification in cyclic creep analysis. Several models- , namely BP model, Whaley and Neville model, modified MC90 for cyclic loading and modified Hyperbolic function for cyclic loading are used for uncertainty quantification. Three types of uncertainty are included in Uncertainty Quantification (UQ): (i) natural variability in loading and materials properties; (ii) data uncertainty due to measurement errors; and (iii) modelling uncertainty and errors during cyclic creep analysis. Due to the consideration of all type of uncertainties, a measure for the total variation of the model response is achieved. The study finds that the BP, modified Hyperbolic and modified MC90 are best performing models for cyclic creep prediction in that order. Further, global Sensitivity Analysis (SA) considering the uncorrelated and correlated parameters is used to quantify the contribution of each source of uncertainty to the overall prediction uncertainty and to identifying the important parameters. The error in determining the input quantities and model itself can produce significant changes in creep prediction values. The variability influence of input random quantities on the cyclic creep was studied by means of the stochastic uncertainty and sensitivity analysis namely the Gartner et al. method and Saltelli et al. method. All input imperfections were considered to be random quantities. The Latin Hypercube Sampling (LHS) numerical simulation method (Monte Carlo type method) was used. It has been found by the stochastic sensitivity analysis that the cyclic creep deformation variability is most sensitive to the Elastic modulus of concrete, compressive strength, mean stress, cyclic stress amplitude, number of cycle, in that order.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Hem Bahadur Motra, Andrea Dimmig-Osburg, Jörg HildebrandGND
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.2780Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170314-27803Cite-Link
URL:http://euklid.bauing.uni-weimar.de/ikm2012
ISSN:1611-4086
Parent Title (English):Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar
Editor: Klaus GürlebeckGND, Tom LahmerORCiDGND, Frank WernerORCiDGND
Language:English
Date of Publication (online):2017/03/03
Date of first Publication:2012/07/04
Release Date:2017/03/14
Publishing Institution:Bauhaus-Universität Weimar
Creating Corporation:Bauhaus-Universität Weimar
Institutes:Fakultät Bauingenieurwesen / Graduiertenkolleg 1462
Pagenumber:18
GND Keyword:Angewandte Informatik; Angewandte Mathematik; Computerunterstütztes Verfahren
Dewey Decimal Classification:000 Informatik, Informationswissenschaft, allgemeine Werke / 000 Informatik, Wissen, Systeme
500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 19. 2012
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)