• Treffer 1 von 20
Zurück zur Trefferliste

Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials

  • We present a physics-informed deep learning model for the transient heat transfer analysis of three-dimensional functionally graded materials (FGMs) employing a Runge–Kutta discrete time scheme. Firstly, the governing equation, associated boundary conditions and the initial condition for transient heat transfer analysis of FGMs with exponential material variations are presented. Then, the deepWe present a physics-informed deep learning model for the transient heat transfer analysis of three-dimensional functionally graded materials (FGMs) employing a Runge–Kutta discrete time scheme. Firstly, the governing equation, associated boundary conditions and the initial condition for transient heat transfer analysis of FGMs with exponential material variations are presented. Then, the deep collocation method with the Runge–Kutta integration scheme for transient analysis is introduced. The prior physics that helps to generalize the physics-informed deep learning model is introduced by constraining the temperature variable with discrete time schemes and initial/boundary conditions. Further the fitted activation functions suitable for dynamic analysis are presented. Finally, we validate our approach through several numerical examples on FGMs with irregular shapes and a variety of boundary conditions. From numerical experiments, the predicted results with PIDL demonstrate well agreement with analytical solutions and other numerical methods in predicting of both temperature and flux distributions and can be adaptive to transient analysis of FGMs with different shapes, which can be the promising surrogate model in transient dynamic analysis.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Dokumentart:Artikel (Wissenschaftlicher)
Verfasserangaben: Hongwei Guo, Naif Alajlan, Xiaoying Zhuang, Prof. Dr.-Ing. Timon RabczukORCiDGND
DOI (Zitierlink):https://doi.org/10.1007/s00466-023-02287-xZitierlink
URN (Zitierlink):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20230517-63666Zitierlink
URL:https://link.springer.com/article/10.1007/s00466-023-02287-x
Titel des übergeordneten Werkes (Englisch):Computational Mechanics
Verlag:Springer
Verlagsort:Berlin
Sprache:Englisch
Datum der Veröffentlichung (online):09.05.2023
Datum der Erstveröffentlichung:06.04.2023
Datum der Freischaltung:17.05.2023
Veröffentlichende Institution:Bauhaus-Universität Weimar
Institute und Partnereinrichtugen:Fakultät Bauingenieurwesen / Professur Modellierung und Simulation - Mechanik
Jahrgang:2023
Seitenzahl:12
Erste Seite:1
Letzte Seite:12
Freies Schlagwort / Tag:functionally graded materials; heat transfer; physics-informed activation function
GND-Schlagwort:Wärmeübergang; Deep Learning; Modellierung
DDC-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften
BKL-Klassifikation:31 Mathematik / 31.80 Angewandte Mathematik
54 Informatik / 54.80 Angewandte Informatik
Lizenz (Deutsch):License Logo Creative Commons 4.0 - Namensnennung (CC BY 4.0)