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Abstract
We present a physics-informed deep learning model for the transient heat transfer analysis of three-dimensional function-
ally graded materials (FGMs) employing a Runge–Kutta discrete time scheme. Firstly, the governing equation, associated
boundary conditions and the initial condition for transient heat transfer analysis of FGMs with exponential material variations
are presented. Then, the deep collocation method with the Runge–Kutta integration scheme for transient analysis is intro-
duced. The prior physics that helps to generalize the physics-informed deep learning model is introduced by constraining
the temperature variable with discrete time schemes and initial/boundary conditions. Further the fitted activation functions
suitable for dynamic analysis are presented. Finally, we validate our approach through several numerical examples on FGMs
with irregular shapes and a variety of boundary conditions. From numerical experiments, the predicted results with PIDL
demonstrate well agreement with analytical solutions and other numerical methods in predicting of both temperature and flux
distributions and can be adaptive to transient analysis of FGMs with different shapes, which can be the promising surrogate
model in transient dynamic analysis.
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1 Introduction

Factionally graded materials (FGMs) are innovative materi-
als with a spatial variation in composition and/or microstruc-
ture for the purpose of controlling variations in physical
properties. Due to their excellent thermal properties, func-
tionally graded materials (FGMs) have been widely used
in the high temperature environments such as aerospace
engineering (e.g. as thermal barrier coatings for aerospace
structures [1]), microelectronics, power generation [2].

Various numerical models have been developed for solv-
ing transient heat conduction problems, such as such as finite-
difference method (FDM) [3–5], finite-element method
(FEM) [6,7], meshless method [8–10], boundary element
method (BEM) [11–13], localized Trefftz-based colloca-
tion method [14], to mention but a few. Recently, Fu et al.
[15] summarized localized collocation methods (LCMs) and
introduced the application of LCMs to solve heat conduction
problems in those nonhomogeneous materials.

Apart from those traditional numerical methods, machine
learning offers another novel opportunity to solve complex
partial differential equations (PDEs). Such approaches can be
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traced back to the seminal work of Lagaris et al. [16] in 1997.
However, such approaches gained in popularity only recently,
probably due to advancements in machine learning tech-
niques and associated open-sources tools such as TensorFlow
orPytorch. Some recent and innovative applicationswith arti-
ficial neural networks are summarized as follows:Khatir et al.
[17] proposed two-stage approaches to study damage detec-
tion, localization and quantification in Functionally Graded
Material (FGM)plate structures,with IsoGeometricAnalysis
(IGA) formodellingwhile using an improved damage indica-
tor based onFrequencyResponseFunction (FRF) for damage
elements identification in first stage and improved Artificial
Neural Network using Arithmetic Optimization Algorithm
(IANN-AOA) for damage quantification problem in the sec-
ond stage. Wang et al. [18] proposed a novel and intelligent
algorithm based on deep learning to realize the recognition
of different types of rail profiles and achieve rapid tracking of
the railhead laser stripe. Ho et al. [19] combined feedforward
neural networks and marine predator algorithm for structural
health monitoring in different scenarios including a simply
supported beam, a two-span continuous beam, and a labo-
ratory free-free beam. Based on a coupled model between
an artificial neural network (ANN) and antlion optimizer
(ALO), Ho et al. managed to localize damages in fixed-free
plate structures based on mode shape derivative based dam-
age identification index [20].

Raissi et al. studied physics-informedmachine learning by
encoding physics with kernel matrix in Gaussian Processes
[21,22]. The physics-informed Gaussian Processes were
applied in solving linear and nonlinear differential equations.
They [23,24] later introduced a physical informed neural net-
works for supervised learning of nonlinear partial differential
equations such as the Burger’s equations or Navier–Stokes
equations, see also their recent contributions in [25]. Two
distinct models were tailored for spatio-temporal datasets:
continuous time and discrete time models. Their physical
informed neural networks were successfully applied in solv-
ing coupled high-dimensional forward-backward stochastic
differential equations. The convergence behaviour of physics
informed neural networks was studied by Shin et al. [26].
Fu et al. [27] proposed an extrinsic approach based on
physics-informed neural networks (PINNs) for solving the
partial differential equations on surfaces embedded in high
dimensional space which manifested good accuracy and
higher efficiency compared with the embedding approach.
Karniadakis et al. [25] gave a comprehensive review on
physic-informed machine learning framework and sum-
marized the general approaches of introducing physics in
machine learning framework and introduced some of the lat-
est applications of physics-informed machine learning.

However, for the transient analysis with physics-informed
neural networks, the current works mostly solve the PDEs
with a continuous time model and applications are often

limited in simple one-dimensional cases [28–30]. Yu et
al. [30] applied PINN and extend physical-informed Neu-
ral Networks (XPINN) in solving steady and transient heat
conduction problems in FGMs based on a continuous time
scheme, for the transient analysis of 2D FGMs, however,
only the radial coordinate and temporal coordinate are con-
sidered. Raissi et al. [21] pointed out that the continuous
time model needs a large amount of collocation points in the
entire spatio-temporal domain which makes the training pro-
hibitively expensive, and typically fails to handle long-time
prediction tasks [31].

In this study, we suggest the physics informed deep learn-
ingbased collocationmethodwith a discrete time scheme that
avoids extra training data from simulations for three dimen-
sional transient heat conduction analysis of FGMs. We also
propose fitted activation functions suitable for transient heat
transfer analysis. The proposed model will then be validated
through several numerical examples. The remainder of this
paper is organized as follows. InSect. 2,wedescribe the phys-
ical model we present our deep collocationmethod in Sect. 3.
Section4 contains several numerical examples to demon-
strate the performance of our approach before themanuscript
concludes in Sect. 5.

2 Transient heat transfer analysis in 3D FGMs

Thegeneral transient diffusion equation for functional graded
materials can be written as:

∇(k(x, t)∇T (x, t)) = c(x, t)
∂T (x, t))

∂t
, x ∈ �, 0 ≤ t < ∞ (1)

where T (x, t) is the temperature function, c is the spe-
cific heat, k the thermal conductivity and � denotes the
domain and � denotes its boundary. We assume that the ther-
mal conductivity and specific heat vary exponentially in the
z−direction:

k(x, t) = k0 exp(2βz)

c(x, t) = c0 exp(2βz)
(2)

where β is the so-called non-homogeneous parameter. After
substituting Equation (2) into Equation (1), we obtain

∇2T (x, t) + 2βTz = 1

α

∂T (x, t))

∂t
(3)

with α = k0/co and Tz = ∂T
∂t . The Dirichlet boundary �D

and von Neumann boundary �N conditions are given as:

T (x, t) = T̄ , x ∈ �D,

q(x, t) = −k(·)∂T (x, t)

∂n
= ¯q(x, t), x ∈ �N

(4)
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where n is the unit outward normal to �N . In this paper, we
assume that the initial temperature to be zero.

3 Physics-informed neural network using
collocationmethod

In this section, the deep learning based collocation method
that using physics-informed deep neural networks with
Runge–Kutta (RK) integration schemes is introduced. First,
a series of collocation points will be generated in the
physical domain and at the boundaries denoted by x� =
(x1, ..., xN�)T and x � = (x1, ..., xN� )T , respectively, which
formulates the dataset of training. Then the time-dependent
heat conduction equation will be discretized using the clas-
sical Runge–Kutta method – with q stages.

3.1 Collocation points generation

To generate randomly distributed collocation points, various
sampling strategies have been developed. The Halton and
Hammersley sequences generate randompoints by construct-
ing the radical inverse [32]. They are both low discrepancy
sequences. Another approach is based on the Korobov Lat-
tice [33]. Sobol Sequence is a quasi-random low-discrepancy
sequence to generate sampling points [34]. Latin hypercube
sampling (LHS) is a statistical method, where a near-random
sample of parameter values is generated from a multidi-
mensional distribution [35]. Monte Carlo methods create
sampling points by repeated random sampling [36]. We have
compared different sampling strategies for the steady state
heat conduction equations in nonhonogeneousmedia in a pre-
vious study and found that Latin hypercube sampling (LHS)
could yield favourable results with increasing layers [37].
Therefore, Latin hypercube sampling (LHS) is selected to
generate collocation points in the transient heat transfer anal-
ysis.

3.2 PINNs with discrete timemodels

3.2.1 Runge–Kutta methods with q stages

For a general time-dependent partial differential equation –
as u′(t) = N (t, u), by applying the general form of Runge-
Kutta methods with q stages [21], an update iterative form
can be obtained

un = uni , i = 1, . . . , q,

un = unq+1,
(5)

where

uni := un+ci − �t
∑q

j=1 ai jN [un+c j ], i = 1, . . . , q,

unq+1 := un+1 − �t
∑q

j=1 b jN [un+c j ]. (6)

with un+c j (x) = u(tn +c j�t, x) for j = 1, . . . , q. Depend-
ing on the choice of the triple parameters {ai j , b j , c j }, an
implicit or explicit time-stepping scheme can be obtained.
Generally, the matrix A = [ai j ] defines the Runge-Kutta
matrix and b = bi and c = ci indicate the weights and
nodes, which can be arranged in Butcher tableau as follows:

c A
bT

=

c1

c2
...

cq

a11 a12 . . . a1q
a21 a22 . . . a2q
...

...
. . .

...

aq1 aq2 . . . aqq

b1 b2 . . . bq

(7)

The theoretical error estimates for Runge–Kutta meth-
ods with q stages predict a temporal error accumulation of
O (

�t2q
)
assuming that�t < 1. Otherwise the solutionmay

not converge.

3.2.2 Discrete time approach

In a continuous time scheme, the neural network is used to
approximate themapping (t, x) �→ u(t, x). The training data
needs to be generated in the spatial-temporal domain, which
can be too costly for analysis in high-dimensions, especially
in the long time integration. On the other hand, we perform
transient analysis in a discrete time scheme by placing a
multi-output neural network prior on

[
un+c1(x), . . . , un+cq (x), un+1(x)

]
. (8)

The neural network is used to approximate the map-
ping (x) �→ (un+c1(x), . . . , un+cq (x), un+1(x)). This prior
assumption along with equation (6) results in a physics
informed neural network that takes x as an input and out-
put:

[
un1(x), . . . , u

n
q(x), u

n
q+1(x)

]
, (9)

with u (tn, x) ≈ unq+1(x). The architecture of the neural net-
work in this application can be found in Fig. 1. The colored
round circle is the basic computational unit and the purple
one on the output layer is the solution at time-step n.

3.3 Activation functions

To introduce the non-linearity regarding material variations
into the neural network of Fig. 1 and enable the back-
propagation, the activation function σ on hidden layers is
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Fig. 1 Basic structure of the
deep feed-forward neural
network
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Fig. 2 Two suggested activation functions for this dynamic neural net-
work

defined. There are many activation functions σ available
such as sigmoids function and hyperbolic tangent function
(Tanh), to name a few [38]. Selecting the activation function
in many cases still remains an open issue and commonly a
trade-off between expressivity and trainability of the neural
network [39]. For vibration analysis, Raissi et al. [40] report
that the sinusoidal activation function is more stable than
the hyperbolic tangent function (Tanh). For transient anal-
ysis with PINNs using discrete time scheme, we also found

that the hyperbolic tangent function (Tanh) cannot converge
but the sinusoidal activation function is also not stable for
many cases. To our experience, the bipolar sigmoid function
f (x) = ex−1

ex+1 [41] and sigmoid-weighted linear unit (SiLU)
function f (x) = x × sigmoid(x) [42] yield better results
in transient dynamic analysis. The two activation functions
that fitted for transient analysis are shown in

The Bipolar sigmoid function is a continuous activation
function with a gradual output value in the range [−1, 1],
which looks similar to hyperbolic tangent function. How-
ever, the hyperbolic tangent function has a steeper slope. The
sigmoid-weighted linear unit (SiLU) function resembles the
classical ReLU activation but is nevertheless a smooth acti-
vation unbounded above but bounded below. Small negative
values can capture underlying patterns from data, while large
negative values may be filtered out to keep sparsity.

3.4 Physics-informed deep learning formulation

Taking advantage of the Runge Kutta method – substituting
Equation (6) to Equation (3), we have

T n
i := T n+ci − �t

∑q
j=1 ai j (α∇2T n+c j (x) + 2αβT

n+c j
z (x)), i = 1, . . . , q,

T n
q+1 := T n+1 − �t

∑q
j=1 b j (α∇2T n+c j (x) + 2αβT

n+c j
z (x)).

(10)

Placing a multi-output neural network prior with coordi-
nates as inputs x on temperatures (T n+c1(x), . . . , T n+cq (x),

T n+1(x)) yields
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(T n+c1(x), . . . , T n+cq (x), T n+1(x)) ≈ f (x; θ), (11)

Combined with Equation (10), we can devise the physics-
informed neural network that outputs (T n

1 (x),

. . . , T n
q (x), T n

q+1(x)) which are approximated by

(T n
1 (x; θ), . . . , T n

q (x; θ), T n
q+1(x; θ))

= f (x; θ) − �t[A; bT ]N ( f (x; θ)). (12)

whereN = α∇2 + 2αβ is the differential operator. The loss
function thus constructed from themean square error is given
by

Loss = MSEn + MSEb, (13)

with

MSEn = 1

N

q+1∑

j=1

Nn∑

i=1

‖T n
j (xn,i ; θ) − T n,i‖2, (14)

and

MSEb = MSET�D
+ MSEq�N

. (15)

where MSET�D
and MSEq�N

are defined as:

MSET�D
= 1

N �D

q∑

i=1

Nn�D∑

i=1

‖T n+ci (xn,i
�D

; θ) − T̄ ‖2. (16)

and

MSEq�N
= 1

N �N

q∑

i=1

Nn�N∑

i=1

‖qn+ci (xn,i
�N

; θ) − q̄‖2. (17)

The transient analysis with discrete time PINNs model is
reduced to an optimization problem:

θ̂ = argmin
θ∈RK

Loss (θ) (18)

One of the most widely used optimization method to train
the physics-informed neural network is the combined Adam-
L-BFGS-B optimization algorithm. This strategy consists of

Fig. 4 Random sampling inside the cubic domian

Fig. 3 Schematic of a
physics-informed deep learning
with discrete time scheme
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Fig. 5 a Predicted temperature
and b analytical temperature
distributions for the functionally
graded unit cube at time
t = 0.1s

Fig. 6 Temperature profiles in z
direction at different time levels
for the FGM cube

Fig. 7 a Predicted flux and b
analytical flux distributions for
the functionally graded unit
cube at time t = 0.005s

123



Computational Mechanics

Fig. 8 Temperature profile in z direction at time t=1 for the FGM cube
problem with time-dependent boundary condition

training the network first using the Adam algorithm and after
a defined number of iterations, we perform the L-BFGS-B
optimization of the loss with a small number of executions.

The basic scheme of the ‘discrete physics-informed deep
learning’ is shown in Fig. 3. A fully-connected neural net-
work with space coordinates as inputs is first applied to
approximate the temperature at Runge–Kutta nodes and at
time step (n+1)�t . Then, the derivatives of the temperature
outputs are calculated using automatic differentiation (AD),
which is then used to formulate the loss. The hyperparame-
ters θ are learnt by minimizing the loss function.

4 Numerical examples

We demonstrate the presented approach through four bench-
mark problems; 100 stages are employed for the discrete time

scheme. We fix the first six hidden layers with 20 neurons
per layer and the rest layers are set to be q + 1 (101) neurons
per layer.

4.1 Case 1: FGMs with exponential material
gradation

Let us consider a unit cube shown in Fig. 4where thematerial
properties vary smoothly and continuously in the z-direction.
The initial and boundary conditions are given as follows:

T (x, y, z; 0) = 0, (19)

and

⎧
⎨

⎩

q(1, y, z; t) = 0; q(0, y, z; t) = 0
q(x, 1, z; t) = 0; q(x, 0, z; t) = 0

T (x, y, 1; t) = 100; T (x, y, 0; t) = 0
(20)

The thermal conductivity parameter in Eq. (2) is k0 = 5
and specific heat parameter is c0 = 1 and non-homogeneous
β = 1. The analytical solution for this problem is given as:

T (x, y, z; t) = T
1 − e−2βz

1 − e−2βL +
∞∑

n=1

Bnsin
(nπ z

L

)

e−βze−(n2π2/L2+β2)αt , (21)

with

Bn = − 2T eβL

β2L2 + n2π2

[

βLsin(nπ)
1 + e−2βL

1 − e−2βL

−nπcos(nπ)

]

(22)

Fig. 9 a Predicted temperature
and b predicted flux
distributions for the functionally
graded unit cube at time t = 1s
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Fig. 10 Geometry of the FGMs with irregular domain

Fig. 11 Random sampling inside the irregular domain

L = 1 being the length of the cube and T = 100. A ran-
dom sampling of collocation points as illustrated in Fig. 4
is generated inside the cubic, with 400 collocation points in
the domain and 80 collocation points on the boundaries. The
learning rate is set to 0.001.

The predicted and analytical temperature at time t = 0.1s
are illustrated in Fig. 5. The temperature profiles in z direc-
tion at different time levels ranging from 0.002 to 0.1 s for the
FGM cube are shown in Fig. 6 and compared with the ana-
lytical solution. At each time level the predicted temperature
coincides with the analytical solution. The flux distribution
at time t = 0.005s is shown in Fig. 7 and agrees well with the
analytical solution. The relative error between the predicted
temperature and the analytical solution at time t = 0.1s
inside the whole functionally graded cube is 3.661e−04.

Fig. 12 Temperature profile in z direction at time t = 0.00001 s for the
FGM with irregular domain

4.2 Case 2: FGMs with time-dependent boundary
condition

For this unit cube, the top surface is prescribed with a time-
dependent boundary condition T (x, y, 1; t) = 10t and all
other surfaces are insulated. The initial and boundary condi-
tions are given as

T (x, y, z; 0) = 0, (23)

and
⎧
⎨

⎩

q(1, y, z; t) = 0; q(0, y, z; t) = 0
q(x, 1, z; t) = 0; q(x, 0, z; t) = 0

T (x, y, 1; t) = 10t; T (x, y, 0; t) = 0
(24)

The thermal conductivity and specific heat parameters in
Equation (2) are k0 = 5 and c0 = 1. Non-homogeneous
parameter β = 1.5. The temperature profile varies again
only in z direction; see Fig. 8 at time t = 1s compared with
a BEM solution using 1200 elements and FEM solution with
1000 linear brick elements [43]. The temperature and flux
contours at time t = 1s can be found in Fig. 9. Compared
with BEM and FEM, deep collocation method is more easy
in implementation without the necessity of building elabo-
rate grids and once the deep learning model is trained, it can
be deployed to predict the temperature and flux distribution
in seconds while maintain the same level of accuracy, which
can be a suitable surrogate model for tradition numerical
methods.

4.3 Case 3: FGMs with Irregular domain

Let us consider now a problem with an irregular domain as
shown in Fig. 10. The inner and outer radii (r1 and r2) of

123



Computational Mechanics

Table 1 Temperature
distributions for irregular FGMs
at different time levels

0.5

0.3

0.075

0.1

0.1

Fig. 13 Geometry of the functionally graded rotor

Fig. 14 Random sampling inside the rotor domian
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Fig. 15 Temperature profile along the right top edge at time t =
0.0066s for the FGM rotor problem

this annular cylinder are 0.03 and 0.05. The height of this
annular cylinder is 0.01. The central angle is π

3 . The material
parameters are set as: thermal conductivity parameter k0 = 5,
the specific heat parameter c0 = 1 and β = 1.5. The initial
and boundary conditions are

T (r , θ, z; 0) = 0, (25)

and

⎧
⎨

⎩

q(r2, θ, z; t) = 0; q(r1, θ, z; t) = 0
q(r , π

3 , z; t) = 0; q(r , 0, z; t) = 0
T (r , θ, 0.01; t) = 1; T (r , θ, 0; t) = 0

(26)

where r1 ≤ r ≤ r2 and 0 ≤ θ ≤ π
3 .

First, we generate random collocation points inside the
irregular physical domain as shown in Fig. 11, with 400 col-
location points inside the domain and 200 collocation points
on the boundaries.

Figure 12 depicts the temperature profile along the z direc-
tion at t = 0.00001s and compared with the reference
solutions from MFS and FEM [43].

Table 1 shows the profile of the overall temperature dis-
tribution. The results agree well with the ones from [43].
The gradation of the temperature along z-axis matches the
material gradation property of the FGM.

4.4 Case 4: Functionally graded rotor problem

Finally, we study a functionally graded rotor with eight holes
presented in Fig. 13. Due to the symmetry, only one-eighth
of the rotor is analyzed. The geometric parameters of this
rotor are marked in Fig. 13. All lines with arrows imply the
length, namely the inner radius is Rinner = 0.5, outer radius

is Router = 0.3 and the height is 0.1; the diameter of the
mounting hole is Diahole = 0.075. The thermal conductivity
and specific heat parameters in Equation (2) are k0 = 5 and
c0 = 1. Non-homogeneous parameter β = 1.5. The initial
conditions are

T (r , θ, z; 0) = 0 (27)

and temperature boundary conditions are imposed on the
inner side/surface (0K) and outer side/surface (100K) while
other surfaces are adiabatic in which the heat flux is set to
0. Figure 14 shows the collocation points for training. Our
results are compared to results of ABAQUS simulations.

The temperature profile along the right top edge at time
t = 0.0066 s is shown in Fig. 15 and the temperature distri-
butions at different time levels is listed in Table 2. It can be
observed that predicted temperature at specific locations and
time matches well with ABAQUS results. The same can be
observed for the evolution of temperature distribution with
both numerical methods.

5 Conclusion

We presented a deep learning based collocation method for
transient heat transfer analysis of three-dimensional func-
tionally graded materials (FGMs). This deep collocation
method combines the classical collocation method and the
deep learning method in one framework which is easy in
implementation and no necessity to build elaborate grids.
For the deep learning model, a physics-informed neural net-
work is combined with a q-stage Runge–Kutta discrete time
scheme for transient heat transfer analysis. Nonlinear acti-
vation functions are adopted to introduce a nonlinearity into
the neural network and fitted for dynamic analysis. We found
the bipolar sigmoid function and sigmoid-weighted linear
unit (SiLU) function most suitable for the physics-informed
neural network for the transient analysis. Based on our previ-
ous study, Latin Hypercube sampling is selected for random
sampling of collocation points making the proposed truly
“meshfree” deep collocation method, such that it can deal
with irregular shaped domains easily.

Various numerical examples were studied to validate the
performance of proposed method including FGMs with an
irregular shape and heat conduction with a variety of bound-
ary conditions. From numerical results, it can be concluded
that both temperature andflux insideFGMspredicted bydeep
collocation method with discrete time scheme and fitted acti-
vation function agree well with analytical solutions and other
classical numericalmethods. The physics-informeddeep col-
location method can be promising as surrogate models for
FEM in dynamic analysis.
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Table 2 Temperature contour at
different time levels
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