• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Has Fulltext

  • no (3)
  • yes (1)

Author

  • Rabczuk, Timon (4)
  • Amani, Jafar (2)
  • Bagherzadeh, Amir Saboor (2)
  • Saboor Bagherzadeh, Amir (2)
  • Ghorashi, Seyed Shahram (1)
  • Lahmer, Tom (1)
  • Rabizadeh, E. (1)
  • Zi, Goangseup (1)

Institute

  • Institut für Strukturmechanik (ISM) (4)
  • Professur Stochastik und Optimierung (1)

Keywords

  • Angewandte Mathematik (3)
  • Strukturmechanik (3)
  • Elastizität (1)
  • Fehlerabschätzung (1)
  • MDLSM method (1)
  • Stochastik (1)

Year of publication

  • 2014 (2)
  • 2015 (1)
  • 2016 (1)

4 search hits

  • 1 to 4
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials (2016)
Ghorashi, Seyed Shahram ; Lahmer, Tom ; Bagherzadeh, Amir Saboor ; Zi, Goangseup ; Rabczuk, Timon
A stochastic computational method based on goal-oriented error estimation for heterogeneous geological materials
Application of goal-oriented error estimation and adaptive mesh refinement on thermo-mechanical multifield problems (2015)
Rabizadeh, E. ; Saboor Bagherzadeh, Amir ; Rabczuk, Timon
Application of goal-oriented error estimation and adaptive mesh re_nement on thermo-mechanical multi_eld problems
Error estimate and adaptive refinement in Mixed Discrete Least Squares Meshless method (2014)
Amani, Jafar ; Bagherzadeh, Amir Saboor ; Rabczuk, Timon
Error estimate and adaptive refinement in Mixed Discrete Least Squares Meshless method
Error estimate and adaptive refinement in mixed discrete least squares meshless method (2014)
Amani, Jafar ; Saboor Bagherzadeh, Amir ; Rabczuk, Timon
The node moving and multistage node enrichment adaptive refinement procedures are extended in mixed discrete least squares meshless (MDLSM) method for efficient analysis of elasticity problems. In the formulation of MDLSM method, mixed formulation is accepted to avoid second-order differentiation of shape functions and to obtain displacements and stresses simultaneously. In the refinement procedures, a robust error estimator based on the value of the least square residuals functional of the governing differential equations and its boundaries at nodal points is used which is inherently available from the MDLSM formulation and can efficiently identify the zones with higher numerical errors. The results are compared with the refinement procedures in the irreducible formulation of discrete least squares meshless (DLSM) method and show the accuracy and efficiency of the proposed procedures. Also, the comparison of the error norms and convergence rate show the fidelity of the proposed adaptive refinement procedures in the MDLSM method.
  • 1 to 4
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018