### Refine

#### Document Type

- Conference Proceeding (6)
- Article (1)

#### Institute

#### Keywords

- Angewandte Mathematik (5)
- Strukturmechanik (5)
- Bruchmechanik (1)
- Finite-Elemente-Methode (1)
- Modellierung (1)
- Nichtlineare Mechanik (1)
- Rissbildung (1)
- Zufallsvariable (1)

#### Year of publication

- 2003 (7) (remove)

Iso-parametric finite elements with linear shape functions show in general a too stiff element behavior, called locking. By the investigation of structural parts under bending loading the so-called shear locking appears, because these elements can not reproduce pure bending modes. Many studies dealt with the locking problem and a number of methods to avoid the undesirable effects have been developed. Two well known methods are the >Assumed Natural Strain< (ANS) method and the >Enhanced Assumed Strain< (EAS) method. In this study the EAS method is applied to a four-node plane element with four EAS-parameters. The paper will describe the well-known linear formulation, its extension to nonlinear materials and the modeling of material uncertainties with random fields. For nonlinear material behavior the EAS parameters can not be determined directly. Here the problem is solved by using an internal iteration at the element level, which is much more efficient and stable than the determination via a global iteration. To verify the deterministic element behavior the results of common test examples are presented for linear and nonlinear materials. The modeling of material uncertainties is done by point-discretized random fields. To show the applicability of the element for stochastic finite element calculations Latin Hypercube Sampling was applied to investigate the stochastic hardening behavior of a cantilever beam with nonlinear material. The enhanced linear element can be applied as an alternative to higher-order finite elements where more nodes are necessary. The presented element formulation can be used in a similar manner to improve stochastic linear solid elements.

In this paper a meshless component is presented, which internally uses the common meshless interpolation technique >Moving Least Squares<. In contrast to usual meshless integration schemes like the cell quadrature and the nodal integration in this study integration zones with triangular geometry spanned by three nodes are used for 2D analysis. The boundary of the structure is defined by boundary nodes, which are similar to finite element nodes. By using the neighborhood relations of the integration zones an efficient search algorithm to detected the nodes in the influence of the integration points was developed. The components are directly coupled with finite elements by using a penalty method. An widely accepted model to describe the fracture behavior of concrete is the >Fictitious Crack Model< which is applied in this study, which differentiates between micro cracks and macro cracks, with and without force transmission over the crack surface, respectively. In this study the crack surface is discretized by node pairs in form of a polygon, which is part of the boundary. To apply the >Fictitious Crack Model< finite interface elements are included between the crack surface nodes. The determination of the maximum principal strain at the crack tip is done by introducing an influence area around the singularity. On a practical example it is shown that the included elements improve the model by the transmission of the surface forces during monotonic loading and by the representation of the contact forces of closed cracks during reverse loading.