Refine
Institute
Keywords
- Maschinelles Lernen (18)
- Machine learning (13)
- machine learning (7)
- big data (6)
- Deep learning (5)
- artificial intelligence (3)
- random forest (3)
- Biodiesel (2)
- Fluid (2)
- Fotovoltaik (2)
Energy‐Efficient Method for Wireless Sensor Networks Low‐Power Radio Operation in Internet of Things
(2020)
The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low‐power radio duty‐cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW‐CCA) as an extension to ContikiMAC to reduce the Radio Duty‐Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW‐CCA reduces about 8% energy consumption in nodes while maintaining up to 99% of the packet delivery rate (PDR).
The classical Internet of things routing and wireless sensor networks can provide more precise monitoring of the covered area due to the higher number of utilized nodes. Because of the limitations in shared transfer media, many nodes in the network are prone to the collision in simultaneous transmissions. Medium access control protocols are usually more practical in networks with low traffic, which are not subjected to external noise from adjacent frequencies. There are preventive, detection and control solutions to congestion management in the network which are all the focus of this study. In the congestion prevention phase, the proposed method chooses the next step of the path using the Fuzzy decision-making system to distribute network traffic via optimal paths. In the congestion detection phase, a dynamic approach to queue management was designed to detect congestion in the least amount of time and prevent the collision. In the congestion control phase, the back-pressure method was used based on the quality of the queue to decrease the probability of linking in the pathway from the pre-congested node. The main goals of this study are to balance energy consumption in network nodes, reducing the rate of lost packets and increasing quality of service in routing. Simulation results proved the proposed Congestion Control Fuzzy Decision Making (CCFDM) method was more capable in improving routing parameters as compared to recent algorithms.
Estimating the solubility of carbon dioxide in ionic liquids, using reliable models, is of paramount importance from both environmental and economic points of view. In this regard, the current research aims at evaluating the performance of two data-driven techniques, namely multilayer perceptron (MLP) and gene expression programming (GEP), for predicting the solubility of carbon dioxide (CO2) in ionic liquids (ILs) as the function of pressure, temperature, and four thermodynamical parameters of the ionic liquid. To develop the above techniques, 744 experimental data points derived from the literature including 13 ILs were used (80% of the points for training and 20% for validation). Two backpropagation-based methods, namely Levenberg–Marquardt (LM) and Bayesian Regularization (BR), were applied to optimize the MLP algorithm. Various statistical and graphical assessments were applied to check the credibility of the developed techniques. The results were then compared with those calculated using Peng–Robinson (PR) or Soave–Redlich–Kwong (SRK) equations of state (EoS). The highest coefficient of determination (R2 = 0.9965) and the lowest root mean square error (RMSE = 0.0116) were recorded for the MLP-LMA model on the full dataset (with a negligible difference to the MLP-BR model). The comparison of results from this model with the vastly applied thermodynamic equation of state models revealed slightly better performance, but the EoS approaches also performed well with R2 from 0.984 up to 0.996. Lastly, the newly established correlation based on the GEP model exhibited very satisfactory results with overall values of R2 = 0.9896 and RMSE = 0.0201.
Following restructuring of power industry, electricity supply to end-use customers has undergone fundamental changes. In the restructured power system, some of the responsibilities of the vertically integrated distribution companies have been assigned to network managers and retailers. Under the new situation, retailers are in charge of providing electrical energy to electricity consumers who have already signed contract with them. Retailers usually provide the required energy at a variable price, from wholesale electricity markets, forward contracts with energy producers, or distributed energy generators, and sell it at a fixed retail price to its clients. Different strategies are implemented by retailers to reduce the potential financial losses and risks associated with the uncertain nature of wholesale spot electricity market prices and electrical load of the consumers. In this paper, the strategic behavior of retailers in implementing forward contracts, distributed energy sources, and demand-response programs with the aim of increasing their profit and reducing their risk, while keeping their retail prices as low as possible, is investigated. For this purpose, risk management problem of the retailer companies collaborating with wholesale electricity markets, is modeled through bi-level programming approach and a comprehensive framework for retail electricity pricing, considering customers’ constraints, is provided in this paper. In the first level of the proposed bi-level optimization problem, the retailer maximizes its expected profit for a given risk level of profit variability, while in the second level, the customers minimize their consumption costs. The proposed programming problem is modeled as Mixed Integer programming (MIP) problem and can be efficiently solved using available commercial solvers. The simulation results on a test case approve the effectiveness of the proposed demand-response program based on dynamic pricing approach on reducing the retailer’s risk and increasing its profit.
In this paper, the decision-making problem of the retailers under dynamic pricing approach for demand response integration have been investigated. The retailer was supposed to rely on forward contracts, DGs, and spot electricity market to supply the required active and reactive power of its customers. To verify the effectiveness of the proposed model, four schemes for retailer’s scheduling problem are considered and the resulted profit under each scheme are analyzed and compared. The simulation results on a test case indicate that providing more options for the retailer to buy the required power of its customers and increase its flexibility in buying energy from spot electricity market reduces the retailers’ risk and increases its profit. From the customers’ perspective also the retailers’accesstodifferentpowersupplysourcesmayleadtoareductionintheretailelectricityprices. Since the retailer would be able to decrease its electricity selling price to the customers without losing its profitability, with the aim of attracting more customers. Inthiswork,theconditionalvalueatrisk(CVaR)measureisusedforconsideringandquantifying riskinthedecision-makingproblems. Amongallthepossibleoptioninfrontoftheretailertooptimize its profit and risk, demand response programs are the most beneficial option for both retailer and its customers. The simulation results on the case study prove that implementing dynamic pricing approach on retail electricity prices to integrate demand response programs can successfully provoke customers to shift their flexible demand from peak-load hours to mid-load and low-load hours. Comparing the simulation results of the third and fourth schemes evidences the impact of DRPs and customers’ load shifting on the reduction of retailer’s risk, as well as the reduction of retailer’s payment to contract holders, DG owners, and spot electricity market. Furthermore, the numerical results imply on the potential of reducing average retail prices up to 8%, under demand response activation. Consequently, it provides a win–win solution for both retailer and its customers.
FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks
(2019)
Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods.
The production of a desired product needs an effective use of the experimental model. The present study proposes an extreme learning machine (ELM) and a support vector machine (SVM) integrated with the response surface methodology (RSM) to solve the complexity in optimization and prediction of the ethyl ester and methyl ester production process. The novel hybrid models of ELM-RSM and ELM-SVM are further used as a case study to estimate the yield of methyl and ethyl esters through a trans-esterification process from waste cooking oil (WCO) based on American Society for Testing and Materials (ASTM) standards. The results of the prediction phase were also compared with artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS), which were recently developed by the second author of this study. Based on the results, an ELM with a correlation coefficient of 0.9815 and 0.9863 for methyl and ethyl esters, respectively, had a high estimation capability compared with that for SVM, ANNs, and ANFIS. Accordingly, the maximum production yield was obtained in the case of using ELM-RSM of 96.86% for ethyl ester at a temperature of 68.48 °C, a catalyst value of 1.15 wt. %, mixing intensity of 650.07 rpm, and an alcohol to oil molar ratio (A/O) of 5.77; for methyl ester, the production yield was 98.46% at a temperature of 67.62 °C, a catalyst value of 1.1 wt. %, mixing intensity of 709.42 rpm, and an A/O of 6.09. Therefore, ELM-RSM increased the production yield by 3.6% for ethyl ester and 3.1% for methyl ester, compared with those for the experimental data.
The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric classification method. However, like other traditional data mining methods, applying it on big data comes with computational challenges. Indeed, KNN determines the class of a new sample based on the class of its nearest neighbors; however, identifying the neighbors in a large amount of data imposes a large computational cost so that it is no longer applicable by a single computing machine. One of the proposed techniques to make classification methods applicable on large datasets is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller partitions using the K-means clustering method; and then applies the KNN for each new sample on the partition which its center is the nearest one. However, because the clusters have different shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has been proposed to improve the pruning phase of the LC-KNN method by taking into account these factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is evaluated on different real datasets. The experimental results show the effectiveness of the proposed approach and its higher classification accuracy and lower time cost in comparison to other recent relevant methods.
Cooling Performance of a Novel Circulatory Flow Concentric Multi-Channel Heat Sink with Nanofluids
(2020)
Heat rejection from electronic devices such as processors necessitates a high heat removal rate. The present study focuses on liquid-cooled novel heat sink geometry made from four channels (width 4 mm and depth 3.5 mm) configured in a concentric shape with alternate flow passages (slot of 3 mm gap). In this study, the cooling performance of the heat sink was tested under simulated controlled conditions.The lower bottom surface of the heat sink was heated at a constant heat flux condition based on dissipated power of 50 W and 70 W. The computations were carried out for different volume fractions of nanoparticles, namely 0.5% to 5%, and water as base fluid at a flow rate of 30 to 180 mL/min. The results showed a higher rate of heat rejection from the nanofluid cooled heat sink compared with water. The enhancement in performance was analyzed with the help of a temperature difference of nanofluid outlet temperature and water outlet temperature under similar operating conditions. The enhancement was ~2% for 0.5% volume fraction nanofluids and ~17% for a 5% volume fraction.
Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70%) and testing (30%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash–Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer.
Evaporation is a very important process; it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, evaporation is considered as a complex and nonlinear phenomenon to model. Thus, machine learning methods have gained popularity in this realm. In the present study, four machine learning methods of Gaussian Process Regression (GPR), K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Regression (SVR) were used to predict the pan evaporation (PE). Meteorological data including PE, temperature (T), relative humidity (RH), wind speed (W), and sunny hours (S) collected from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error (RMSE), correlation coefficient (R) and Mean Absolute Error (MAE). Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. The results of this study showed that at Gonbad-e Kavus, Gorgan and Bandar Torkman stations, GPR with RMSE of 1.521 mm/day, 1.244 mm/day, and 1.254 mm/day, KNN with RMSE of 1.991 mm/day, 1.775 mm/day, and 1.577 mm/day, RF with RMSE of 1.614 mm/day, 1.337 mm/day, and 1.316 mm/day, and SVR with RMSE of 1.55 mm/day, 1.262 mm/day, and 1.275 mm/day had more appropriate performances in estimating PE values. It was found that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W and S had the most accurate predictions and were proposed for precise estimation of PE. The findings of the current study indicated that the PE values may be accurately estimated with few easily measured meteorological parameters.