### Refine

#### Keywords

- Finite-Elemente-Methode (3)
- Physikalisches Verfahren (3)
- Bandmatrix (1)
- Transport (1)

#### Year of publication

- 2004 (3) (remove)

The method of the finite elements is an adaptable numerical procedure for interpolation as well as for the numerical approximation of solutions of partial differential equations. The basis of these procedure is the formulation of suitable finite elements and element decompositions of the solution space. Classical finite elements are based on triangles or quadrangles in the two-dimensional space and tetrahedron or hexahedron in the threedimensional space. The use of arbitrary-dimensional convex and non-convex polyhedrons as the geometrical basis of finite elements increases the flexibility of generating finite element decompositions substantially and is sometimes the only way to get a clear decomposition...

Development and Analysis of Sparse Matrix Concepts for Finite Element Approximation on general Cells
(2004)

In engineering and computing, the finite element approximation is one of the most well-known computational solution techniques. It is a great tool to find solutions for mechanic, fluid mechanic and ecological problems. Whoever works with the finite element method will need to solve a large system of linear equations. There are different ways to find a solution. One way is to use a matrix decomposition technique such as LU or QR. The other possibility is to use an iterative solution algorithm like Conjugate Gradients, Gauß-Seidel, Multigrid Methods, etc. This paper will focus on iterative solvers and the needed storage techniques...

Transport problems, as, for instance, the transport of sediment in hydraulic engineering and the transport of harmful substances through porous media, play an important role in many fields of civil engineering. Other examples include the dissipation of heat or sound as well as the simulation of traffic with macroscopic models. The contribution explains the analysis of the applicability of Voronoi-based finite volume methods for the approximation of solutions of transport problems. A special concern is the discretisation of the transport equation. Current limitations of the method as well as ideas for stabilisation are explained with examples.