### Refine

#### Document Type

- Conference Proceeding (11)
- Article (2)

#### Institute

#### Keywords

- Angewandte Mathematik (9)
- Strukturmechanik (8)
- Architektur <Informatik> (4)
- Computerunterstütztes Verfahren (4)
- CAD (3)
- Angewandte Informatik (1)
- Beton (1)
- Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (1)
- Dreidimensionales Modell (1)
- Finite-Elemente-Methode (1)

A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales
(2003)

This paper introduces a method to generate adequate inclusion-matrix geometries of concrete in two and three dimensions, which are independent of any specific numerical discretization. The article starts with an analysis on shapes of natural aggregates and discusses corresponding mathematical realizations. As a first prototype a two-dimensional generation of a mesoscale model is introduced. Particle size distribution functions are analysed and prepared for simulating an adequate three-dimensional representation of the aggregates within a concrete structure. A sample geometry of a three-dimensional test cube is generated and the finite element analysis of its heterogeneous geometry by a uniform mesh is presented. Concluding, aspects of a multiscale analysis are discussed and possible enhancements are proposed.

A fast solver method called the multigrid preconditioned conjugate gradient method is proposed for the mechanical analysis of heterogeneous materials on the mesoscale. Even small samples of a heterogeneous material such as concrete show a complex geometry of different phases. These materials can be modelled by projection onto a uniform, orthogonal grid of elements. As one major problem the possible resolution of the concrete specimen is generally restricted due to (a) computation times and even more critical (b) memory demand. Iterative solvers can be based on a local element-based formulation while orthogonal grids consist of geometrical identical elements. The element-based formulation is short and transparent, and therefore efficient in implementation. A variation of the material properties in elements or integration points is possible. The multigrid method is a fast iterative solver method, where ideally the computational effort only increases linear with problem size. This is an optimal property which is almost reached in the implementation presented here. In fact no other method is known which scales better than linear. Therefore the multigrid method gains in importance the larger the problem becomes. But for heterogeneous models with very large ratios of Young's moduli the multigrid method considerably slows down by a constant factor. Such large ratios occur in certain heterogeneous solids, as well as in the damage analysis of solids. As solution to this problem the multigrid preconditioned conjugate gradient method is proposed. A benchmark highlights the multigrid preconditioned conjugate gradient method as the method of choice for very large ratio's of Young's modulus. A proposed modified multigrid cycle shows good results, in the application as stand-alone solver or as preconditioner.