### Refine

#### Document Type

- Article (12)
- Conference Proceeding (2)
- Doctoral Thesis (1)

#### Institute

#### Keywords

- Angewandte Mathematik (14)
- Strukturmechanik (13)
- Angewandte Informatik (1)
- Architektur <Informatik> (1)
- Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (1)
- Computerunterstütztes Verfahren (1)
- FEM (1)
- Isogeometric analysis (1)
- NURBS (1)
- RHT-splines (1)

A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.

Isogeometric finite element analysis has become a powerful alternative to standard finite elements due to their flexibility in handling complex geometries. One major drawback of NURBS based isogeometric finite elements is their less effectiveness of local refinement. In this study, we present an alternative to NURBS based isogeometric finite elements that allow for local refinement. The idea is based on polynomial splines and exploits the flexibility of T-meshes for local refinement. The shape functions satisfy important properties such as non-negativity, local support and partition of unity. We will demonstrate the efficiency of the proposed method by two numerical examples.

This paper presents a novel numerical procedure based on the framework of isogeometric analysis for static, free vibration, and buckling analysis of laminated composite plates using the first-order shear deformation theory. The isogeometric approach utilizes non-uniform rational B-splines to implement for the quadratic, cubic, and quartic elements. Shear locking problem still exists in the stiffness formulation, and hence, it can be significantly alleviated by a stabilization technique. Several numerical examples are presented to show the performance of the method, and the results obtained are compared with other available ones.

This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal–dual algorithm. An associated primal–dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal–dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods.

This thesis presents two new methods in finite elements and isogeometric analysis for structural analysis. The first method proposes an alternative alpha finite element method using triangular elements. In this method, the piecewise constant strain field of linear triangular finite element method models is enhanced by additional strain terms with an adjustable parameter a, which results in an effectively softer stiffness formulation compared to a linear triangular element. In order to avoid the transverse shear locking of Reissner-Mindlin plates analysis the alpha finite element method is coupled with a discrete shear gap technique for triangular elements to significantly improve the accuracy of the standard triangular finite elements.
The basic idea behind this element formulation is to approximate displacements and rotations as in the standard finite element method, but to construct the bending, geometrical and shear strains using node-based smoothing domains. Several numerical examples are presented and show that the alpha FEM gives a good agreement compared to several other methods in the literature.
Second method, isogeometric analysis based on rational splines over hierarchical T-meshes (RHT-splines) is proposed. The RHT-splines are a generalization of Non-Uniform Rational B-splines (NURBS) over hierarchical T-meshes, which is a piecewise bicubic polynomial over a hierarchical
T-mesh. The RHT-splines basis functions not only inherit all the properties of NURBS such as non-negativity, local support and partition of unity but also more importantly as the capability of joining geometric objects without gaps, preserving higher order continuity everywhere and allow local refinement and adaptivity. In order to drive the adaptive refinement, an efficient recovery-based error estimator is employed. For this problem an imaginary surface is defined. The imaginary surface is basically constructed by RHT-splines basis functions which is used for approximation and interpolation functions as well as the construction of the recovered stress components. Numerical investigations prove that the proposed method is capable to obtain results with higher accuracy and convergence rate than NURBS results.