### Refine

#### Document Type

- Article (13)
- Conference Proceeding (2)

#### Institute

- Professur Informatik im Bauwesen (15) (remove)

#### Keywords

- Finite-Elemente-Methode (15) (remove)

#### Year of publication

- 2004 (15) (remove)

A large-scale computer modeling and simulation method is presented for environmental flows in urban area. Several GIS and CAD data were used for the preparation of shape model and an automatic mesh generation method based on Delaunay method was developed. Parallel finite element method based on domain decomposition method was employed for the numerical simulation of natural phenomena. The present method was applied to the simulation of flood flow and wind flow in urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments.

This paper presents the combination of two different parallelization environments, OpenMP and MPI, in one numerical simulation tool. The computation of the system matrices and vectors is parallelized with OpenMP and the solution of the system of equations is done with the MPIbased solver MUMPS. The efficiency of both algorithms is shown on several linear and nonlinear examples using the Finite Element Method and a meshless discretization technique.

Transport problems, as, for instance, the transport of sediment in hydraulic engineering and the transport of harmful substances through porous media, play an important role in many fields of civil engineering. Other examples include the dissipation of heat or sound as well as the simulation of traffic with macroscopic models. The contribution explains the analysis of the applicability of Voronoi-based finite volume methods for the approximation of solutions of transport problems. A special concern is the discretisation of the transport equation. Current limitations of the method as well as ideas for stabilisation are explained with examples.

Analysis System for Bridge Test (Chinese name abbr.: QLJC) is an application software specially designed for bridge test to analyze the static and dynamic character of bridge structures, calculate efficiency ratio of load test, pick up the results of observation points and so on. In this paper, research content, system design, calculation theory, characteristics and practical application of QLJC is introduced in detail.

The influence of vortex-induces vibrations on vertical tie rods has been proved as a determinant load factor in the lifetime-oriented dimensioning of arched steel bridges. Particularly, the welded connection plates between the suspenders and the arches often exhibit cracks induced primarily rods. In this context, the synchronization of the vortex-shedding to the rod motion in a critical wind velocity range, the so-called lock-in effect, is of essential interest.

The method of the finite elements is an adaptable numerical procedure for interpolation as well as for the numerical approximation of solutions of partial differential equations. The basis of these procedure is the formulation of suitable finite elements and element decompositions of the solution space. Classical finite elements are based on triangles or quadrangles in the two-dimensional space and tetrahedron or hexahedron in the threedimensional space. The use of arbitrary-dimensional convex and non-convex polyhedrons as the geometrical basis of finite elements increases the flexibility of generating finite element decompositions substantially and is sometimes the only way to get a clear decomposition...

In this paper, systematic analyses for the shoring systems installed to support the applied loads during construction are performed on the basis of the numerical approach. On the basis of a rigorous time-dependent analysis, structural behaviors of reinforced concrete (RC) frame structures according to the changes in design variables such as the types of shoring systems, shore stiffness and shore spacing are analyzed and discussed. The time-dependent deformations of concrete such as creep and shrinkage and construction sequences of frame structures are also taken into account to minimize the structural instability and to reach to an improved design of shoring system because these effects may increase the axial forces delivered to the shores. In advance, the influence of the column shortening effect, generally mentioned in a tall building structure, is analyzed. From many parametric studies, it has been finally concluded that the most effective shoring system in RC frame structures is 2S1R (two shores and one reshore) regardless of the changes in design variables.

Development and Analysis of Sparse Matrix Concepts for Finite Element Approximation on general Cells
(2004)

In engineering and computing, the finite element approximation is one of the most well-known computational solution techniques. It is a great tool to find solutions for mechanic, fluid mechanic and ecological problems. Whoever works with the finite element method will need to solve a large system of linear equations. There are different ways to find a solution. One way is to use a matrix decomposition technique such as LU or QR. The other possibility is to use an iterative solution algorithm like Conjugate Gradients, Gauß-Seidel, Multigrid Methods, etc. This paper will focus on iterative solvers and the needed storage techniques...

The paper investigates accuracy of deflection predictions made by the finite element package ATENA and design code methods ACI and EC2. Deflections have been calculated for a large number of experimental reinforced concrete beams reported by three investigators. Statistical parameters have been established for each of the technique at different load levels, separately for the beams with small and moderate reinforcement ratio.

Creation of hierarchical sequence of the plastic and viscoplastic models according to different levels of structure approximations is considered. Developed strategy of multimodel analysis, which consists of creation of the inelastic models library, determination of selection criteria system and caring out of multivariant sequential clarifying computations, is described. Application of the multimodel approach in numerical computations has demonstrated possibility of reliable prediction of stress-strain response under wide variety of combined nonproportional loading.