### Refine

#### Has Fulltext

- yes (145) (remove)

#### Document Type

- Conference Proceeding (145) (remove)

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (82)
- Graduiertenkolleg 1462 (31)
- Institut für Strukturmechanik (12)
- Professur Angewandte Mathematik (12)
- Institut für Konstruktiven Ingenieurbau (4)
- Professur Informatik im Bauwesen (4)
- Juniorprofessur Stochastik und Optimierung (3)
- Professur Computer Vision in Engineering (2)
- Professur Stahlbau (2)
- Institut für Mathematik-Bauphysik (1)

#### Keywords

- Angewandte Informatik (145) (remove)

We present recent developments of adaptive wavelet solvers for elliptic eigenvalue problems. We describe the underlying abstract iteration scheme of the preconditioned perturbed iteration. We apply the iteration to a simple model problem in order to identify the main ideas which a numerical realization of the abstract scheme is based upon. This indicates how these concepts carry over to wavelet discretizations. Finally we present numerical results for the Poisson eigenvalue problem on an L-shaped domain.

The application of partly decoupled approach by means of continuum mechanics facilitates the calculation of structural responses due to welding. The numerical results demonstrate the ability of a qualitative prediction of welded connections. As it is intended to integrate the local effects of a joint in structural analysis of steel constructions, it is necessary to meet higher approaches towards quality. The wide array of material parameters are presented, which are affecting the thermal, metallurgical and mechanical behavior, and which have to be identified. For that purpose further investigations are necessary to analyze the sensitivity of the models towards different material properties. The experimental determination of every material parameter is not possible due to the extraordinary laborious efforts needed. Besides that, experimentally identified parameters can be applied only for the tested steel quality for measured temperature-time regimes. For that reason alternative approaches for identification of material parameters, such as optimization strategies, have to be applied. After a definition of material parameters a quantitative prediction of welded connections will also be possible. Numerical results show the effect of phase transformation, activated by welding process, on residual stress state. As these phenomena occur in local areas in the range of crystal and grain sizes, the description of microscopic phenomena and their propagation on a macroscopic level due to approaches of homogenization might be expedient. Nevertheless, one should bear in mind, the increasing number of material parameters as well as the complexity of their experimental determination. Thus the microscopic approach should always be investigated under the scope of ability and efficiency of a required prediction. Under certain circumstances a step backwards, adopting a phenomenological approach, also can be beneficial.

The analysis of the response of complex structural systems requires the description of the material constitutive relations by means of an appropriate material model. The level of abstraction of such model may strongly affect the quality of the prognosis of the whole structure. In context to this fact, it is necessary to describe the material in a convenient sense as exact but as simple as possible. All material phenomena of crystalline materials e.g. steel, affecting the behavior of the structure, rely on physical effects which are interacting over spatial scales from subatomic to macroscopic range. Nevertheless, if the material is microscopically heterogenic, it might be appropriate to use phenomenological models for the purpose of civil engineering. Although constantly applied, these models are insufficient for steel materials with microscopic characteristics such as texture, typically occurring in hot rolled steel members or heat affected zones of welded joints. Hence, texture is manifested in crystalline materials as a regular crystallographic structure and crystallite orientation, influencing macroscopic material properties. The analysis of structural response of material with texture (e.g. rolled steel or heat affected zone of a welded joint) obliges the extension of the phenomenological material description of macroscopic scale by means of microscopic information. This paper introduces an enrichment approach for material models based on a hierarchical multiscale methodology. This has been done by describing the grain texture on a mesoscopic scale and coupling it with macroscopic constitutive relations by means of homogenization. Due to a variety of available homogenization methods, the question of an assessment of coupling quality arises. The applicability of the method and the effect of the coupling method on the reliability of the response are presented on an example.

Nodal integration of finite elements has been investigated recently. Compared with full integration it shows better convergence when applied to incompressible media, allows easier remeshing and highly reduces the number of material evaluation points thus improving efficiency. Furthermore, understanding it may help to create new integration schemes in meshless methods as well. The new integration technique requires a nodally averaged deformation gradient. For the tetrahedral element it is possible to formulate a nodal strain which passes the patch test. On the downside, it introduces non-physical low energy modes. Most of these "spurious modes" are local deformation maps of neighbouring elements. Present stabilization schemes rely on adding a stabilizing potential to the strain energy. The stabilization is discussed within this article. Its drawbacks are easily identified within numerical experiments: Nonlinear material laws are not well represented. Plastic strains may often be underestimated. Geometrically nonlinear stabilization greatly reduces computational efficiency. The article reinterpretes nodal integration in terms of imposing a nonconforming C0-continuous strain field on the structure. By doing so, the origins of the spurious modes are discussed and two methods are presented that solve this problem. First, a geometric constraint is formulated and solved using a mixed formulation of Hu-Washizu type. This assumption leads to a consistent representation of the strain energy while eliminating spurious modes. The solution is exact, but only of theoretical interest since it produces global support. Second, an integration scheme is presented that approximates the stabilization criterion. The latter leads to a highly efficient scheme. It can even be extended to other finite element types such as hexahedrals. Numerical efficiency, convergence behaviour and stability of the new method is validated using linear tetrahedral and hexahedral elements.

Modern distributed engineering applications are based on complex systems consisting of various subsystems that are connected through the Internet. Communication and collaboration within an entire system requires reliable and efficient data exchange between the subsystems. Middleware developed within the web evolution during the past years provides reliable and efficient data exchange for web applications, which can be adopted for solving the data exchange problems in distributed engineering applications. This paper presents a generic approach for reliable and efficient data exchange between engineering devices using existing middleware known from web applications. Different existing middleware is examined with respect to the suitability in engineering applications. In this paper, a suitable middleware is shown and a prototype implementation simulating distributed wind farm control is presented and validated using several performance measurements.

Steel structural design is an integral part of the building construction process. So far, various methods of design have been applied in practice to satisfy the design requirements. This paper attempts to acquire the Differential Evolution Algorithms in automatization of specific synthesis and rationalization of design process. The capacity of the Differential Evolution Algorithms to deal with continuous and/or discrete optimization of steel structures is also demonstrated. The goal of this study is to propose an optimal design of steel frame structures using built-up I-sections and/or a combination of standard hot-rolled profiles. All optimized steel frame structures in this paper generated optimization solutions better than the original solution designed by the manufacturer. Taking the criteria regarding the quality and efficiency of the practical design into consideration, the produced optimal design with the Differential Evolution Algorithms can completely replace conventional design because of its excellent performance.

A practical framework for generating cross correlated fields with a specified marginal distribution function, an autocorrelation function and cross correlation coefficients is presented in the paper. The contribution promotes a recent journal paper [1]. The approach relies on well known series expansion methods for simulation of a Gaussian random field. The proposed method requires all cross correlated fields over the domain to share an identical autocorrelation function and the cross correlation structure between each pair of simulated fields to be simply defined by a cross correlation coefficient. Such relations result in specific properties of eigenvectors of covariance matrices of discretized field over the domain. These properties are used to decompose the eigenproblem which must normally be solved in computing the series expansion into two smaller eigenproblems. Such decomposition represents a significant reduction of computational effort. Non-Gaussian components of a multivariate random field are proposed to be simulated via memoryless transformation of underlying Gaussian random fields for which the Nataf model is employed to modify the correlation structure. In this method, the autocorrelation structure of each field is fulfilled exactly while the cross correlation is only approximated. The associated errors can be computed before performing simulations and it is shown that the errors happen especially in the cross correlation between distant points and that they are negligibly small in practical situations.

What is nowadays called (classic) Clifford analysis consists in the establishment of a function theory for functions belonging to the kernel of the Dirac operator. While such functions can very well describe problems of a particle with internal SU(2)-symmetries, higher order symmetries are beyond this theory. Although many modifications (such as Yang-Mills theory) were suggested over the years they could not address the principal problem, the need of a n-fold factorization of the d’Alembert operator. In this paper we present the basic tools of a fractional function theory in higher dimensions, for the transport operator (alpha = 1/2 ), by means of a fractional correspondence to the Weyl relations via fractional Riemann-Liouville derivatives. A Fischer decomposition, fractional Euler and Gamma operators, monogenic projection, and basic fractional homogeneous powers are constructed.

The stress state of a piecewise-homogeneous elastic body, which has a semi-infinite crack along the interface, under in-plane and antiplane loads is considered. One of the crack edges is reinforced by a rigid patch plate on a finite interval adjacent to the crack tip. The crack edges are loaded with specified stresses. The body is stretched at infinity by specified stresses. External forces with a given principal vector and moment act on the patch plate. The problem reduces to a Riemann-Hilbert boundary-value matrix problem with a piecewise-constant coefficient for two complex potentials in the plane case and for one in the antiplane case. The complex potentials are found explicitly using a Gaussian hypergeometric function. The stress state of the body close to the ends of the patch plate, one of which is also simultaneously the crack tip, is investigated. Stress intensity factors near the singular points are determined.