### Refine

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (3) (remove)

#### Keywords

- Computerunterstütztes Verfahren (3) (remove)

#### Year of publication

- 2010 (3) (remove)

From passenger’s perspective, punctuality is one of the most important features of tram route operation. We present a stochastic simulation model with special focus on determining important factors of influence. The statistical analysis bases on large samples (sample size is nearly 2000) accumulated from comprehensive measurements on eight tram routes in Cracow. For the simulation, we are not only interested in average values but also in stochastic characteristics like the variance and other properties of the distribution. A realization of trams operations is assumed to be a sequence of running times between successive stops and times spent by tram at the stops divided in passengers alighting and boarding times and times waiting for possibility of departure . The running time depends on the kind of track separation including the priorities in traffic lights, the length of the section and the number of intersections. For every type of section, a linear mixed regression model describes the average running time and its variance as functions of the length of the section and the number of intersections. The regression coefficients are estimated by the iterative re-weighted least square method. Alighting and boarding time mainly depends on type of vehicle, number of passengers alighting and boarding and occupancy of vehicle. For the distribution of the time waiting for possibility of departure suitable distributions like Gamma distribution and Lognormal distribution are fitted.

We investigate aspects of tram-network section reliability, which operates as a part of the model of whole city tram-network reliability. Here, one of the main points of interest is the character of the chronological development of the disturbances (namely the differences between time of departure provided in schedule and real time of departure) on subsequent sections during tram line operation. These developments were observed in comprehensive measurements done in Krakow, during one of the main transportation nodes (Rondo Mogilskie) rebuilding. All taken building activities cause big disturbances in tram lines operation with effects extended to neighboring sections. In a second part, the stochastic character of section running time will be analyzed more detailed. There will be taken into consideration sections with only one beginning stop and also with two or three beginning stops located at different streets at an intersection. Possibility of adding results from sections with two beginning stops to one set will be checked with suitable statistical tests which are used to compare the means of the two samples. Section running time may depend on the value of gap between two following trams and from the value of deviation from schedule. This dependence will be described by a multi regression formula. The main measurements were done in the city center of Krakow in two stages: before and after big changes in tramway infrastructure.

Several results concerning the distribution of the headway of busses in the flow behind a traffic signal are presented. In the main focus of interest is the description of analytical models, which are verified by the results of Monte-Carlo-Methods. The advantage of analytical models (verified, but not derived by simulation methods) is their flexibility with respect to possible generalizations. For instance, several random distributions of the flow incoming to the traffic signal can be compared. The attention will be directed at the question, how the primary headway H (analyzed in front of the traffic signal) is mapped to the headway H’ analyzed behind of the traffic signal and how the random distribution of H is mapped to that of H’. For the traffic flow in front of the traffic signal several models will be discussed. The first case considers the situation, that busses operate on a common lane with the individual motor car traffic and the traffic flow is saturated. In the second situation, busses operate on a separated bus lane. Moreover, a mixed situation is discussed to model as close to reality as possible.