### Refine

#### Has Fulltext

- yes (2)

#### Document Type

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (2) (remove)

#### Keywords

- Computerunterstütztes Verfahren (2) (remove)

#### Year of publication

- 2006 (2) (remove)

ON THE NAVIER-STOKES EQUATION WITH FREE CONVECTION IN STRIP DOMAINS AND 3D TRIANGULAR CHANNELS
(2006)

The Navier-Stokes equations and related ones can be treated very elegantly with the quaternionic operator calculus developed in a series of works by K. Guerlebeck, W. Sproeossig and others. This study will be extended in this paper. In order to apply the quaternionic operator calculus to solve these types of boundary value problems fully explicitly, one basically needs to evaluate two types of integral operators: the Teodorescu operator and the quaternionic Bergman projector. While the integral kernel of the Teodorescu transform is universal for all domains, the kernel function of the Bergman projector, called the Bergman kernel, depends on the geometry of the domain. With special variants of quaternionic holomorphic multiperiodic functions we obtain explicit formulas for three dimensional parallel plate channels, rectangular block domains and regular triangular channels. The explicit knowledge of the integral kernels makes it then possible to evaluate the operator equations in order to determine the solutions of the boundary value problem explicitly.

In this paper we study the structure of the solutions to higher dimensional Dirac type equations generalizing the known λ-hyperholomorphic functions, where λ is a complex parameter. The structure of the solutions to the system of partial differential equations (D- λ) f=0 show a close connection with Bessel functions of first kind with complex argument. The more general system of partial differential equations that is considered in this paper combines Dirac and Euler operators and emphasizes the role of the Bessel functions. However, contrary to the simplest case, one gets now Bessel functions of any arbitrary complex order.