• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Document Type

  • Article (1)
  • Conference Proceeding (1)
  • Doctoral Thesis (1)

Author

  • Posern, Konrad (2)
  • Bonatz, Dennis (1)
  • Linnow, Kirsten (1)
  • Ludwig, Horst-Michael (1)
  • Müller, Matthias (1)
  • Niermann, Michael (1)
  • Steiger, Michael (1)

Institute

  • Professur Bauchemie und Polymere Werkstoffe (2)
  • F. A. Finger-Institut für Baustoffkunde (1)

Keywords

  • Magnesiumsulfat (3) (remove)

Year of publication

  • 2012 (2)
  • 2014 (1)

3 search hits

  • 1 to 3
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Sulfatangriff magnesiumhaltiger Wässer auf Mörtel unterschiedlicher Zusammensetzung (2012)
Müller, Matthias ; Ludwig, Horst-Michael
Die besondere Aggressivität von hochkonzentrierten Magnesiumsulfatlösungen bei Einwirkung auf Beton ist seit vielen Jahrzehnten bekannt. Neben dem Sulfat greift zusätzlich auch das Magnesium den Zementstein an. Bei hohen Lösungskonzentrationen nimmt der Magnesiumangriff gegenüber dem Sulfatangriff sogar eine dominante Rolle ein. Magnesiumgehalte unter 300 mg/l im Grundwasser gelten allerdings bislang als nicht angreifend. In Auslagerungs- und Laborversuchen wurde jedoch festgestellt, dass auch bei praxisrelevanten Magnesium- (<300 mg/l) und Sulfatgehalten (1.500 mg/l) das Magnesium zu einer deutlichen Verschärfung des Sulfatangriffes bei niedrigen Temperaturen führte. Diese Verschärfung trat bei Mörteln und Betonen auf, bei denen der erhöhte Sulfatwiderstand durch einen teilweisen Zementersatz mit 20 % Flugasche zu einem CEM II/A-LL erreicht werden sollte, gemäß der Flugascheregelung nach EN 206-1/DIN 1045-2. Bei einem teilweisen Zementersatz durch 30 % Flugasche konnte auch in magnesiumhaltigen Sulfatlösungen eine deutliche Verbesserung des Sulfatwiderstandes erreicht werden. Mörtel mit HS-Zement als Bindemittel wiesen keinerlei Schäden auf. Schadensverursachend war eine Kombination mehrerer Einflüsse. Zum einen wurde der Sulfatwiderstand des Zement-Flugasche-Systems durch die unzureichende Reaktion der Flugasche infolge der niedrigen Lagerungstemperatur geschwächt. Zum anderen konnte durch die Einwirkung des Magnesiums in der Randzone vermutlich eine Destabilisierung der C-S-H-Phasen erfolgen, wodurch die Thaumasitbildung an dieser Stelle forciert wurde. Zusätzlich wurde durch den Portlanditverbrauch und die pH-Wert-Absenkung in der Randzone die puzzolanische Reaktion der Flugasche behindert.
Experimental Studies of the Mechanism and Kinetics of Hydration Reactions (2014)
Linnow, Kirsten ; Niermann, Michael ; Bonatz, Dennis ; Posern, Konrad ; Steiger, Michael
The mechanism and the kinetics of hydration reactions are important for the application of a salt hydrate as a thermochemical heat storage material. MgSO4·H2O and Na2SO4 were chosen in this study because they are both promising candidates for such an application. Considering that the hydration of these salts yields MgSO4·7H2O and Na2SO4·10H2O as the reaction products, the maximum overall heat effect can be calculated from the heat of condensation of water vapor (44 kJ mol–1) and the heats of hydration of 75 kJ·mol-1 (for MgSO4·H2O) and 81 kJ mol-1 (for Na2SO4). Based on the densities of the two hydrated phases, this results in the very high theoretical energy densities of 2.3 GJ·m-3 and 2.4 GJ·m-3, respectively, for MgSO4·7H2O and Na2SO4·10H2O. Not only the energy density is important for the dimensioning of a storage system, but also the kinetics of hydration reactions play a major role for the application as storage material. In the present study, hydration reactions under varying climatic conditions were investigated by using water vapor sorption measurements and in-situ Raman microscopy. Using the phase diagrams, it can be clearly shown that the mechanism and the kinetics depend on the climatic conditions. Below the deliquescence humidity of the lower hydrated phase the hydration proceeds as solid state reaction, whilst above the deliquescence humidity a through solution mechanism takes place.
Untersuchungen von Magnesiumsulfat-Hydraten und Sulfat/Chlorid-Mischungen für die Eignung als Aktivstoff in Kompositmaterialien für die thermochemische Wärmespeicherung (2012)
Posern, Konrad
Die thermochemische Wärmespeicherung über reversible Salzhydratation stellt einen aussichtsreichen Weg zur Speicherung von Niedertemperaturwärme, wie z.B. solarer Energie, dar. Untersuchungen an Magnesiumsulfat-Hydraten zeigen, dass das bei 130°C entwässerte Magnesiumsulfat-Heptahydrat seinen thermodynamisch stabilen Endzustand während der Reaktion mit gasförmigem Wasser nicht wieder erreicht. Um diese kinetische Hemmung zu überwinden und den Einfluss von unterschiedlichen Porenräumen auf die Hydratation bzw. Sorption des Magnesiumsulfates zu charakterisieren, wurde das Magnesiumsulfat in Trägermaterialien auf Basis offenporiger Gläser mit durchschnittlichen Porendurchmessern von 4 nm bis 1,4 µm eingebracht und diese Kompositmaterialien untersucht. Dabei ist festgestellt worden, dass jede salzbezogene Sorptionswärme im Porenraum höher ist, als die des ungeträgerten Salzes und mit kleiner werdendem Porenradius weiter zunimmt. Weiterhin wurden Teile des Magnesiumsulfates mit niedrig deliqueszierenden Salzen substituiert, um die Wasseraufnahme und somit die Wärmespeicherkapazität zu erhöhen. Dies stellt einen neuen Weg zur Herstellung von Kompositmaterialien dar, über den man Eigenschaften wie Deliqueszenzfeuchte und Desorptionstemperatur einstellen und an die Sorptionsbedingungen eines Speichers anpassen kann. Als niedrig deliqueszierende Salze wurden Magnesiumchlorid und Lithiumchlorid als Zusätze untersucht, wobei ein Ansteigen der Sorptionswärme und Wasseraufnahme mit steigendem Chloridanteil festgestellt wurde. Aufgrund der geringeren Deliqueszenzfeuchte des Lithiumchlorides gegenüber dem Magnesiumchlorid wurden bei gleichen Massenverhältnissen höhere Sorptionswärmen erzielt. Untersuchungen zu Zinksulfat in Verbindung mit Chloriden bescheinigen diesem Salz -speziell bei tieferen Entwässerungstemperaturen- eine gute Eignung als Aktivstoff zur Wärmespeicherung. Zusammenfassend konnte festgestellt werden, dass sich die Wärmespeicherkapazitäten über die Porengröße, in die das Salz eingebracht wird, und die gewählte Mischungszusammensetzung steuern lassen. Die gemessenen Sorptionswärmen ermöglichen insbesondere bei niedrigen Sorptionstemperaturen und hohen Luftfeuchtigkeiten den Schluss, dass die Verwendung von Salzmischungen als Aktivkomponente in Kompositmaterialien einen geeigneten Weg zur thermochemischen Speicherung solarer Wärme (≤130 °C) darstellt.
  • 1 to 3
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018