Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 67 von 173
Zurück zur Trefferliste

MULTILEVEL COMPUTATION IN CIVIL ENGINEERING BASED ON MULTIMODEL ELASTO-PLASTIC ANALYSIS

  • Requires for reliability and durability of structures and their elements with simultaneous material economy have stimulated improvement of constitutive equations for description of elasto-plastic deformation processes. This has led to the development of phenomenological modelling of complex phenomena of irreversible deformation including history-dependent and rate-dependent effects. During theRequires for reliability and durability of structures and their elements with simultaneous material economy have stimulated improvement of constitutive equations for description of elasto-plastic deformation processes. This has led to the development of phenomenological modelling of complex phenomena of irreversible deformation including history-dependent and rate-dependent effects. During the last several decades many works have been devoted to the development of elasto-plastic models, in order to better predict the material behavior under combined variable thermo-mechanical loading. The increase of accuracy of stress analysis and safety factors for complex structures with the help of modern finite-element packages (ABAQUS, ANSYS, COSMOS, LS-DYNA, MSC.MARC, MSC.NASTRAN, PERMAS and other) can be provided only by use of complex and special variants of plasticity theories, which are adequate for the considered loading conditions and based on authentic information about properties of materials. The areas of application of the various theories (models) are as a rule unknown to the users of finite-element packages at the existing variety loading condition sin machine-building designs. At the moment a universal theory of inelasticity is absent and even the most accomplished theories can not guarantee adequate description of deformation processes for arbitrary structure under wide range of loading programs. The classifier of materials, loading conditions, effects (phenomena) and list of basic experiments are developed by the authors. Use of these classifiers for an establishment of hierarchy of models is a first step for introduction of the multimodel analysis into computational practice. The set of the classic and modern inelasticity theories is considered, so that they are applicable for stress analysis of structures under complex loading programs. Among them there are plastic flow theories with linear and nonlinear isotropic and kinematic hardening, multisurface theories, endochronic theory, holonomic theory, rheologic models, theory of elasto-plastic processes, slip theory, physical theories (single crystal and polycrystalline models) and others. The classification of materials provides rearranging by a degree of homogeneous, chemical composition, level of strength and plasticity, behavior under cyclic loading, anisotropy of properties at initial condition, anisotropy of properties during deformation process, structural stability. The classification of loading conditions takes into consideration proportional and non-proportional loading, temperature range, combination of cyclic and monotonous loading, one-axial, two-axial and complex stress state, curvature of strain path, presence of stress concentrators and level of strain gradient. A unified general form of constitutive equations is presented for all used material models based upon the concept of internal state variables. The wide range of mentioned above inelastic material models has been implemented into finite element program PANTOCRATOR developed by authors (see for details www.pantocrator.narod.ru). Application possibility of different material models is considered both for material element and for complex structures subjected to complex non-proportional loading.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Dokumentart:Konferenzveröffentlichung
Verfasserangaben: B. E. Melnikov, Artem Semenov
DOI (Zitierlink):https://doi.org/10.25643/bauhaus-universitaet.2991Zitierlink
URN (Zitierlink):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170327-29911Zitierlink
URL:http://euklid.bauing.uni-weimar.de/ikm2006/index.php_lang=de&what=papers.html
Herausgeber: Klaus GürlebeckGND, Carsten KönkeORCiDGND
Sprache:Englisch
Datum der Veröffentlichung (online):25.03.2017
Datum der Erstveröffentlichung:14.07.2006
Datum der Freischaltung:27.03.2017
Veröffentlichende Institution:Bauhaus-Universität Weimar
Urhebende Körperschaft:Bauhaus-Universität Weimar
Institute und Partnereinrichtugen:Bauhaus-Universität Weimar / In Zusammenarbeit mit der Bauhaus-Universität Weimar
Seitenzahl:11
GND-Schlagwort:Architektur <Informatik>; CAD; Computerunterstütztes Verfahren
DDC-Klassifikation:500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Klassifikation:56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Sammlungen:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 17. 2006
Lizenz (Deutsch):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)