• Treffer 2 von 2
Zurück zur Trefferliste

Computational Modelling for the Effects of Capsular Clustering on Fracture of Encapsulation-Based Self-Healing Concrete Using XFEM and Cohesive Surface Technique

  • The fracture of microcapsules is an important issue to release the healing agent for healing the cracks in encapsulation-based self-healing concrete. The capsular clustering generated from the concrete mixing process is considered one of the critical factors in the fracture mechanism. Since there is a lack of studies in the literature regarding this issue, the design of self-healing concreteThe fracture of microcapsules is an important issue to release the healing agent for healing the cracks in encapsulation-based self-healing concrete. The capsular clustering generated from the concrete mixing process is considered one of the critical factors in the fracture mechanism. Since there is a lack of studies in the literature regarding this issue, the design of self-healing concrete cannot be made without an appropriate modelling strategy. In this paper, the effects of microcapsule size and clustering on the fractured microcapsules are studied computationally. A simple 2D computational modelling approach is developed based on the eXtended Finite Element Method (XFEM) and cohesive surface technique. The proposed model shows that the microcapsule size and clustering have significant roles in governing the load-carrying capacity and the crack propagation pattern and determines whether the microcapsule will be fractured or debonded from the concrete matrix. The higher the microcapsule circumferential contact length, the higher the load-carrying capacity. When it is lower than 25% of the microcapsule circumference, it will result in a greater possibility for the debonding of the microcapsule from the concrete. The greater the core/shell ratio (smaller shell thickness), the greater the likelihood of microcapsules being fractured.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Gefördert durch das Programm Open Access Publizieren der DFG und den Publikationsfonds der Bauhaus-Universität Weimar.

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Dokumentart:Artikel (Wissenschaftlicher)
Verfasserangaben: John Hanna
DOI (Zitierlink):https://doi.org/10.3390/app12105112Zitierlink
URN (Zitierlink):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20220721-46717Zitierlink
URL:https://www.mdpi.com/2076-3417/12/10/5112
Titel des übergeordneten Werkes (Englisch):Applied Sciences
Verlag:MDPI
Verlagsort:Basel
Sprache:Englisch
Datum der Veröffentlichung (online):21.07.2022
Datum der Erstveröffentlichung:19.05.2022
Datum der Freischaltung:21.07.2022
Veröffentlichende Institution:Bauhaus-Universität Weimar
Institute und Partnereinrichtugen:Fakultät Bauingenieurwesen / Institut für Strukturmechanik (ISM)
Jahrgang:2022
Ausgabe / Heft:Volume 12, issue 10, article 5112
Seitenzahl:17
Erste Seite:1
Letzte Seite:17
Freies Schlagwort / Tag:OA-Publikationsfonds2022
capsular clustering; circumferential contact length; microcapsule; self-healing concrete
GND-Schlagwort:Beton; Mikrokapsel; Rissausbreitung; Tragfähigkeit
DDC-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften
BKL-Klassifikation:56 Bauwesen
Open Access Publikationsfonds:Open-Access-Publikationsfonds 2022
Lizenz (Deutsch):License Logo Creative Commons 4.0 - Namensnennung (CC BY 4.0)