• search hit 8 of 2531
Back to Result List

DISCRETE-CONTINUAL BOUNDARY ELEMENT METHODS OF ANALYSIS FOR TWO-DIMENSIONAL AND THREE-DIMENSIONAL STRUCTURES

  • The aim of this paper is to present so-called discrete-continual boundary element method (DCBEM) of structural analysis. Its field of application comprises buildings constructions, structures and also parts and components for the residential, commercial and un-inhabitant structures with invariability of physical and geometrical parameters in some dimensions. We should mention here in particularThe aim of this paper is to present so-called discrete-continual boundary element method (DCBEM) of structural analysis. Its field of application comprises buildings constructions, structures and also parts and components for the residential, commercial and un-inhabitant structures with invariability of physical and geometrical parameters in some dimensions. We should mention here in particular such objects as beams, thin-walled bars, strip foundations, plates, shells, deep beams, high-rise buildings, extensional buildings, pipelines, rails, dams and others. DCBEM comes under group of semianalytical methods. Semianalytical formulations are contemporary mathematical models which currently becoming available for realization due to substantial speed-up of computer productivity. DCBEM is based on the theory of the pseudodifferential boundary equations. Corresponding pseudodifferential operators are discretely approximated using Fourier analysis or wavelet analysis. The main DCBEM advantages against the other methods of the numerical analysis is a double reduction in dimension of the problem (discrete numerical division applied not to the full region of the interest but only to the boundary of the region cross section, as a matter of fact one is solving an one-dimensional problem with the finite step on the boundary area of the region), one has opportunities to carrying out very detailed analysis of the specific chosen zones, simplified initial data preparation, simplistic and adaptive algorithms. There are two methods to define and conduct DCBEM analysis developed – indirect (IDCBEM) and direct (DDCBEM), thus indirect like in boundary element method (BEM) applied and used little bit more than direct.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Alexander B. Zolotov, Pavel Akimov, Vladimir Sidorov
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.3041Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170327-30419Cite-Link
URL:http://euklid.bauing.uni-weimar.de/ikm2006/index.php_lang=de&what=papers.html
Editor: Klaus GürlebeckGND, Carsten KönkeORCiDGND
Language:English
Date of Publication (online):2017/03/27
Date of first Publication:2006/07/14
Release Date:2017/03/27
Publishing Institution:Bauhaus-Universität Weimar
Creating Corporation:Bauhaus-Universität Weimar
Institutes:Bauhaus-Universität Weimar / In Zusammenarbeit mit der Bauhaus-Universität Weimar
Pagenumber:22
GND Keyword:Architektur <Informatik>; CAD; Computerunterstütztes Verfahren
Dewey Decimal Classification:500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Classification:56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 17. 2006
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)