• search hit 85 of 184
Back to Result List


  • The one-dimensional continuous wavelet transform is a successful tool for signal and image analysis, with applications in physics and engineering. Clifford analysis offers an appropriate framework for taking wavelets to higher dimension. In the usual orthogonal case Clifford analysis focusses on monogenic functions, i.e. null solutions of the rotation invariant vector valued Dirac operator ∂, defined in terms of an orthogonal basis for the quadratic space Rm underlying the construction of the Clifford algebra R0,m. An intrinsic feature of this function theory is that it encompasses all dimensions at once, as opposed to a tensorial approach with products of one-dimensional phenomena. This has allowed for a very specific construction of higher dimensional wavelets and the development of the corresponding theory, based on generalizations of classical orthogonal polynomials on the real line, such as the radial Clifford-Hermite polynomials introduced by Sommen. In this paper, we pass to the Hermitian Clifford setting, i.e. we let the same set of generators produce the complex Clifford algebra C2n (with even dimension), which we equip with a Hermitian conjugation and a Hermitian inner product. Hermitian Clifford analysis then focusses on the null solutions of two mutually conjugate Hermitian Dirac operators which are invariant under the action of the unitary group. In this setting we construct new Clifford-Hermite polynomials, starting in a natural way from a Rodrigues formula which now involves both Dirac operators mentioned. Due to the specific features of the Hermitian setting, four different types of polynomials are obtained, two types of even degree and two types of odd degree. These polynomials are used to introduce a new continuous wavelet transform, after thorough investigation of all necessary properties of the involved polynomials, the mother wavelet and the associated family of wavelet kernels.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Document Type:Conference Proceeding
Author: Fred Brackx, Hennie De Schepper, Nele De Schepper, Frank Sommen
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.2931Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170327-29313Cite-Link
Editor: Klaus GürlebeckGND, Carsten KönkeORCiDGND
Date of Publication (online):2017/03/24
Date of first Publication:2006/07/14
Release Date:2017/03/27
Publishing Institution:Bauhaus-Universität Weimar
Creating Corporation:Bauhaus-Universität Weimar
Institutes:Bauhaus-Universität Weimar / In Zusammenarbeit mit der Bauhaus-Universität Weimar
GND Keyword:Architektur <Informatik>; CAD; Computerunterstütztes Verfahren
Dewey Decimal Classification:500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Classification:56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 17. 2006
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)