• search hit 1 of 4
Back to Result List

The Hermite Transformation in Quaternionic Analysis

  • The conventional way of describing an image is in terms of its canonical pixel-based representation. Other image description techniques are based on image transformations. Such an image transformation converts a canonical image representation into a representation in which specific properties of an image are described more explicitly. In most transformations, images are locally approximated withinThe conventional way of describing an image is in terms of its canonical pixel-based representation. Other image description techniques are based on image transformations. Such an image transformation converts a canonical image representation into a representation in which specific properties of an image are described more explicitly. In most transformations, images are locally approximated within a window by a linear combination of a number of a priori selected patterns. The coefficients of such a decomposition then provide the desired image representation. The Hermite transform is an image transformation technique introduced by Martens. It uses overlapping Gaussian windows and projects images locally onto a basis of orthogonal polynomials. As the analysis filters needed for the Hermite transform are derivatives of Gaussians, Hermite analysis is in close agreement with the information analysis carried out by the human visual system. In this paper we construct a new higher dimensional Hermite transform within the framework of Quaternionic Analysis. The building blocks for this construction are the Clifford-Hermite polynomials rewritten in terms of Quaternionic analysis. Furthermore, we compare this newly introduced Hermite transform with the Quaternionic-Hermite Continuous Wavelet transform. The Continuous Wavelet transform is a signal analysis technique suitable for non-stationary, inhomogeneous signals for which Fourier analysis is inadequate. Finally the developed three dimensional filter functions of the Quaternionic-Hermite transform are tested with traditional scalar benchmark signals upon their selectivity at detecting pointwise singularities.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Fred Brackx, Nele De Schepper, Frank Sommen
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.281Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20111215-2817Cite-Link
Language:English
Date of Publication (online):2004/12/20
Year of first Publication:2003
Release Date:2004/12/20
Institutes and partner institutions:Fakultät Bauingenieurwesen / Professur Informatik im Bauwesen
GND Keyword:Quaternion; Hermitesche Entwicklung
Source:Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen , IKM , 16 , 2003 , Weimar , Bauhaus-Universität
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 16. 2003
Licence (German):License Logo In Copyright