Identifizierung der Zementart in Zementsteinen und die Übertragbarkeit auf Mörtel und Betone

  • Der Einsatz ungeeigneter Materialien ist eine der häufigsten Ursachen für Bauwerksschäden. Da die Beseitigung dieser Schäden oft mit hohen Kosten verbunden ist, besteht in der Baupraxis der Bedarf an einer Identifizierungsmethode für eingesetzte Baustoffe. Daneben wäre eine Kenntnis der in einem Bauwerk vorliegenden Materialien auch für Instandhaltungsarbeiten hilfreich. Die Identifizierung derDer Einsatz ungeeigneter Materialien ist eine der häufigsten Ursachen für Bauwerksschäden. Da die Beseitigung dieser Schäden oft mit hohen Kosten verbunden ist, besteht in der Baupraxis der Bedarf an einer Identifizierungsmethode für eingesetzte Baustoffe. Daneben wäre eine Kenntnis der in einem Bauwerk vorliegenden Materialien auch für Instandhaltungsarbeiten hilfreich. Die Identifizierung der in einem Festbeton oder Festmörtel vorliegenden Zementart gilt auch gegenwärtig noch als schwierig oder sogar unmöglich. Die Schwierigkeiten ergeben sich in erste Linie daraus, dass die Hydratationsprodukte verschiedener Zementarten oft nur geringe Unterschiede in ihrer chemischen und mineralogischen Zusammensetzung aufweisen und die Hydratationsmechanismen bei einigen Zementarten noch nicht vollständig erforscht sind. Primäres Ziel der vorliegenden Arbeit war es zu untersuchen, ob anhand des Mineralphasenbestandes, der sich während einer thermischen Behandlung von Zementsteinen einstellt, eine Identifizierung der vorliegenden Zementart möglich ist. Weiterhin sollte die Übertragbarkeit dieser Ergebnisse auf Betone und Mörtel eingeschätzt werden. Zur Schaffung von Identifizierungsmerkmalen wurden die (angereicherten) Zementsteine bei Temperaturen im Bereich zwischen 600 °C und 1400 °C thermisch behandelt. An den getemperten Proben wurde der Mineralphasenbestand mittels Röntgendiffraktometrie bestimmt. Mit der gleichen Methode wurden die Ausgangszemente und die (angereicherten) Zementsteine untersucht. Aus der Gegenüberstellung der nachgewiesenen Mineralphasen konnten die gesuchten Identifizierungsmerkmale abgeleitet werden. Um den Einfluss der Gesteinskörnungen auf die Identifizierungsmöglichkeiten gesondert zu erfassen, wurde das Versuchsprogramm auf 3 Abstraktionsebenen angelegt. Für die Auswertung der Ergebnisse wurden die Proben zu Klassen zusammengefasst, welche jeweils charakteristische Zusammensetzungen der Ausgangszemente repräsentieren. Für die Analyseergebnisse wurden die klassenspezifischen die Mittel- und Grenzwerte bestimmt. Als die effektivste Methode zur Anreicherung der Zementsteinmatrix aus Mörtel- und Betonproben erwies sich die Kombination aus einer Zerkleinerung in einem Laborbackenbrecher. Die fein partikulären Fraktionen, welche Zementsteingehalte von 70-80 Ma.-% aufwiesen, wurden als Analyseproben verwendet. Es zeigte sich aber auch, dass das Anreicherungsergebnis von der Gesteinskörnungsart abhängt. Bei Laborbetonen mit einer Kalkstein-Gesteinskörnung wurde mit der gleichen Methode lediglich eine Anreicherung des Zementsteins auf etwa 50 Ma.-% erreicht. Die Untersuchungen auf Abstraktionsebene 1 lieferten die Erkenntnis, dass der Hydratationsprozess der Klinkerphasen, der Klinkerphasengemische sowie des Hüttensandes, auch in Gegenwart des Sulfatträgers für Behandlungstemperaturen im Bereich des Klinkerbrandes vollständig reversibel ist. Im Hinblick auf die Identifizierungsmöglichkeiten wurde 1100 °C als optimale Behandlungstemperatur ermittelt, da hier eine Schmelzphasenbildung ausgeschlossen werden kann. Durch eine Gegenüberstellung der chemischen Zusammensetzung der Ausgangszemente und des Phasenbestandes nach der Temperung konnte nachgewiesen werden, dass bei reinen Zementsteinen grundsätzlich alle Bestandteile an der Reaktion, die während der thermischen Behandlung bei 1100 °C stattfindet, beteiligt sind. Der sich einstellende Phasen bestand ist nur von der chemischen Zusammensetzung der Probe und dabei besonders von derem CaO-Gehalt abhängig. Empirisch wurde eine Prioritätenfolge für die Phasenbildung ermittelt. Daraus geht hervor, dass bevorzugt CaO-reiche Phasen, wie Aluminatferritphase, Belit und Ye‘elimit entstehen und dass überschüssiger Kalk als freies CaO vorliegt. Nur wenn der CaO-Gehalt der Probe nicht für die vollständige Bildung der – in der Summe – kalkreichsten Phasen ausreicht, entstehen partiell oder vollständig kalkärmere Phasen, wie Merwinit und Melilith. Basierend auf den Prioritäten zur Phasenbildung wurde ein Satz von Berechnungsgleichungen aufgestellt, mit denen der CaO-Typ aus der Phasenzusammensetzung der bei 1100 °C getemperten Probe bestimmt werden kann. CaO-Typen repräsentieren Bereiche für die chemische Zusammensetzung der Ausgangsprobe, welche bei der Temperaturbehandlung zu einer charakteristischen qualitativen Phasenzusammensetzung führen. Die CaO-Typen der marktüblichen Zementarten wurden anhand der in der Norm EN 197 festgelegten Bereiche für die Zusammensetzung der Zemente aus ihren Hauptbestandteilen sowie der aus der Fachliteratur ermittelten Bereiche für die chemische Zusammensetzung dieser Hauptbestandteile ermittelt. Damit kann für die Zementarten der Phasenbestand vorhergesagt werden, welcher sich während der Temperaturbehandlung des entsprechenden Zementsteins einstellt. Ein Vergleich mit dem gemessenen Phasenbestand erlaubt so die Identifizierung der Zementart. Die Übertragbarkeit der durch die Untersuchungen an den Zementsteinen gewonnenen Erkenntnisse und die daraus abgeleiteten Identifizierungsmöglichkeiten auf Zementsteine, welche aus quarzsandhaltigen Normmörteln angereichert wurden, konnte nachgewiesen werden. Dabei wurde eine leichte Verschiebung des Phasenbestandes hin zu kalkärmeren Phasen beobachtet, welche auf die Reaktionsbeteiligung eines Teils der in den Proben enthaltenen Restgesteinskörnung zurückzuführen ist. Die Unterscheidungsmöglichkeiten zwischen den Zementarten blieben jedoch überwiegend erhalten. Bei Betonen nimmt der Einfluss der Gesteinskörnung auf den Phasenbestand deutlich zu und kann zum Teil nicht mehr vernachlässigt werden. Die Identifizierungsmöglichkeiten müssen deshalb nach der chemischen Zusammensetzung und der Reaktivität der Gesteinskörnung differenziert ermittelt werden. Dazu sind weitere Untersuchungen notwendig. Für Zementsteine, zementsteinreiche Systeme sowie Mörtel und Betone mit wenig reaktiven Gesteinskörnungen kann die Zementart bereits mit der in dieser Arbeit vorgestellten Methode identifiziert werden. In Fällen, für die sich die Bereiche der chemischen Zusammensetzung mehrerer Zementarten überschneiden, kann es dabei notwendig sein, zusätzliche chemische bzw. mineralogische Untersuchungen durchzuführen, z. B. am unbehandelten Zementstein.show moreshow less

Download full text files

Export metadata

Metadaten
Document Type:Doctoral Thesis
Author:Dipl.-Ing. Frank Splittgerber
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.1817Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20130114-18179Cite-Link
Referee:Prof. Dr.-Ing. Horst-Michael LudwigORCiDGND, Prof. Dr. rer. nat. Dietmar StephanORCiDGND
Advisor:Prof. Dr.-Ing. habil. Anette Müller
Language:German
Date of Publication (online):2013/01/14
Date of first Publication:2013/01/14
Date of final exam:2012/09/26
Release Date:2013/01/14
Publishing Institution:Bauhaus-Universität Weimar
Granting Institution:Bauhaus-Universität Weimar, Fakultät Bauingenieurwesen
Institutes and partner institutions:Fakultät Bauingenieurwesen / Professur Aufbereitung von Baustoffen und Wiederverwertung
Pagenumber:173
GND Keyword:Baustoff; Zement; Identifikation
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
BKL-Classification:51 Werkstoffkunde
56 Bauwesen
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen (CC BY-NC-SA 4.0)