Open-Access-Publikationsfonds 2020
Refine
Institute
- Institut für Strukturmechanik (19)
- Professur für Sozialwissenschaftliche Stadtforschung (2)
- Bauhaus-Institut für zukunftsweisende Infrastruktursysteme (1)
- Institut für Europäische Urbanistik (1)
- Institut für Konstruktiven Ingenieurbau (1)
- Juniorprofessur Organisation und vernetzte Medien (1)
- Professur Bauchemie und Polymere Werkstoffe (1)
- Professur Raumplanung und Raumforschung (1)
- Professur Stadtplanung (1)
- Promotionsstudiengang Kunst und Design-Freie Kunst-Medienkunst (Ph.D) (1)
Keywords
- Maschinelles Lernen (8)
- Erdbeben (5)
- Machine learning (4)
- Wohnen (3)
- big data (3)
- machine learning (3)
- rapid visual screening (3)
- Fotovoltaik (2)
- Fuzzy-Logik (2)
- Wohnungsfrage (2)
The development of a hydro-mechanically coupled Coupled-Eulerian–Lagrangian (CEL) method and its application to the back-analysisof vibratory pile driving model tests in water-saturated sand is presented. The predicted pile penetration using this approachis in good agreement with the results of the model tests as well as with fully Lagrangian simulations. In terms of pore water pressure, however, the results of the CEL simulation show a slightly worse accordance with the model tests compared to the Lagrangian simulation. Some shortcomings of the hydro-mechanically coupled CEL method in case of frictional contact problems and pore fluids with high bulk modulus are discussed. Lastly, the CEL method is applied to the simulation of vibratory driving of open-profile piles under partially drained conditions to study installation-induced changes in the soil state. It is concluded that the proposed method is capable of realistically reproducing the most important mechanisms in the soil during the driving process despite its addressed shortcomings.
Die derzeitige Wohnungskrise hat eine sozial-ökologische Kernproblematik. Dabei ist die sozial ungerechte und ökologisch problematische Verteilung von Wohnfläche meist unsichtbar und wird weder in wissenschaftlichen noch in aktivistischen Kontexten ausreichend als Frage der Flächengerechtigkeit problematisiert. Denn Wohnraum und Fläche in einer Stadt sind keine endlos verfügbaren Güter: Wenn einige Menschen auf viel Raum leben, bleibt für andere Menschen weniger Fläche übrig. Und die Menschen, die am wenigstens für eine Verknappung von Wohnraum verantwortlich sind, leiden am meisten darunter. Dieser Artikel arbeitet zunächst den Begriff der Wohnflächengerechtigkeit heraus, wobei auf die Ungleichverteilung von Wohnfläche und deren gesellschaftliche Implikationen unter derzeitigen Wohnungsverteilungsmechanismen Bezug genommen wird. Anschließend wird der Verbrauch von (Wohn-)Fläche aus ökologischer Perspektive problematisiert. Der Artikel diskutiert scheinbare und transformationsorientierte Lösungs- und Handlungsansätze. Abschließend fordert er in der kritischen Stadtforschung und in aktivistischen Kontexten eine stärkere Debatte um eine Wohnflächengerechtigkeit, deren Verwirklichung gleichermaßen eine soziale wie ökologische Dimension hat.
Die Verbindung der sozialen und der ökologischen Frage ist eine der zentralen Herausforderungen linker Politik und kritisch-engagierter Wissenschaft heute. Dafür, wie wenig das bisher gelingt, sind die öffentlichen und wissenschaftlichen Diskussionen um die Wohnungsfrage gute Beispiele. Dieser Aufruf ist eine Einladung an den kollektiven Wissensschatz aus Wissenschaft und Aktivismus, die unterschiedlichen Aspekte der ökologischen Wohnungsfrage, die bisher stark fragmentiert behandelt werden, in einzelnen Beiträgen weiter auszuführen und auf ihren strukturellen Zusammenhang mit der sozialen Wohnungsfrage hin zu beleuchten.
Matthias Bernt und Andrej Holm weisen zu Recht darauf hin, dass es einer Forschung zu ostdeutschen Städten als konzeptionell eigenständigem Feld bedarf, die die spezifische Verräumlichung des tiefgreifenden gesellschaftlichen Transformationsprozesses nach 1990 ins Zentrum stellt. Dabei betrachten sie insbesondere das Feld des Wohnens als produktiv, um Kenntnis über die Struktur und Wirkung dieses Prozesses zu erlangen. Allerdings bleiben sie vage dabei, wie eine solche spezifisch auf Ostdeutschland gerichtete Wohnungsforschung zu konzipieren wäre und in welcher Weise die Besonderheiten und Parallelitäten ostdeutscher Entwicklungen zu den Transformationen von Wohnungs- und Stadtentwicklungspolitik in Westdeutschland, aber auch international, in Bezug zu setzen wären.
Der Beitrag verbindet die Diskussion um die postpolitische Stadt mit der zunehmenden wissenschaftlichen und aktivistischen Auseinandersetzung mit dem Anthropozän, ein Konzept, das die ökologischen und sozialpolitischen Implikationen menschlichen Handelns auf die Erdoberfläche beschreibt. Anhand von drei ausgewählten Fallstudien erkunden wir,
wie die spezifisch anthropogene, also menschengemachte, Krise urbaner Luftverschmutzung in künstlerischen Positionen problematisiert wird. Im Kontext des potenziellen Vormarschs von Postpolitik besprechen wir, wie der ambivalente Diskurs des Anthropozäns einerseits Depolitisierung begünstigt und andererseits neue Möglichkeiten für die Repolitisierung
globaler Umweltherausforderungen ermöglicht.
Prediction of the groundwater nitrate concentration is of utmost importance for pollution control and water resource management. This research aims to model the spatial groundwater nitrate concentration in the Marvdasht watershed, Iran, based on several artificial intelligence methods of support vector machine (SVM), Cubist, random forest (RF), and Bayesian artificial neural network (Baysia-ANN) machine learning models. For this purpose, 11 independent variables affecting groundwater nitrate changes include elevation, slope, plan curvature, profile curvature, rainfall, piezometric depth, distance from the river, distance from residential, Sodium (Na), Potassium (K), and topographic wetness index (TWI) in the study area were prepared. Nitrate levels were also measured in 67 wells and used as a dependent variable for modeling. Data were divided into two categories of training (70%) and testing (30%) for modeling. The evaluation criteria coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and Nash–Sutcliffe efficiency (NSE) were used to evaluate the performance of the models used. The results of modeling the susceptibility of groundwater nitrate concentration showed that the RF (R2 = 0.89, RMSE = 4.24, NSE = 0.87) model is better than the other Cubist (R2 = 0.87, RMSE = 5.18, NSE = 0.81), SVM (R2 = 0.74, RMSE = 6.07, NSE = 0.74), Bayesian-ANN (R2 = 0.79, RMSE = 5.91, NSE = 0.75) models. The results of groundwater nitrate concentration zoning in the study area showed that the northern parts of the case study have the highest amount of nitrate, which is higher in these agricultural areas than in other areas. The most important cause of nitrate pollution in these areas is agriculture activities and the use of groundwater to irrigate these crops and the wells close to agricultural areas, which has led to the indiscriminate use of chemical fertilizers by irrigation or rainwater of these fertilizers is washed and penetrates groundwater and pollutes the aquifer.
Tall buildings have become an integral part of cities despite all their pros and cons. Some current tall buildings have several problems because of their unsuitable location; the problems include increasing density, imposing traffic on urban thoroughfares, blocking view corridors, etc. Some of these buildings have destroyed desirable views of the city. In this research, different criteria have been chosen, such as environment, access, social-economic, land-use, and physical context. These criteria and sub-criteria are prioritized and weighted by the analytic network process (ANP) based on experts’ opinions, using Super Decisions V2.8 software. On the other hand, layers corresponding to sub-criteria were made in ArcGIS 10.3 simultaneously, then via a weighted overlay (map algebra), a locating plan was created. In the next step seven hypothetical tall buildings (20 stories), in the best part of the locating plan, were considered to evaluate how much of theses hypothetical buildings would be visible (fuzzy visibility) from the street and open spaces throughout the city. These processes have been modeled by MATLAB software, and the final fuzzy visibility plan was created by ArcGIS. Fuzzy visibility results can help city managers and planners to choose which location is suitable for a tall building and how much visibility may be appropriate. The proposed model can locate tall buildings based on technical and visual criteria in the future development of the city and it can be widely used in any city as long as the criteria and weights are localized.
This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70%) and testing (30%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon.
For this paper, the problem of energy/voltage management in photovoltaic (PV)/battery systems was studied, and a new fractional-order control system on basis of type-3 (T3) fuzzy logic systems (FLSs) was developed. New fractional-order learning rules are derived for tuning of T3-FLSs such that the stability is ensured. In addition, using fractional-order calculus, the robustness was studied versus dynamic uncertainties, perturbation of irradiation, and temperature and abruptly faults in output loads, and, subsequently, new compensators were proposed. In several examinations under difficult operation conditions, such as random temperature, variable irradiation, and abrupt changes in output load, the capability of the schemed controller was verified. In addition, in comparison with other methods, such as proportional-derivative-integral (PID), sliding mode controller (SMC), passivity-based control systems (PBC), and linear quadratic regulator (LQR), the superiority of the suggested method was demonstrated.
In this study, a new approach to basis of intelligent systems and machine learning algorithms is introduced for solving singular multi-pantograph differential equations (SMDEs). For the first time, a type-2 fuzzy logic based approach is formulated to find an approximated solution. The rules of the suggested type-2 fuzzy logic system (T2-FLS) are optimized by the square root cubature Kalman filter (SCKF) such that the proposed fineness function to be minimized. Furthermore, the stability and boundedness of the estimation error is proved by novel approach on basis of Lyapunov theorem. The accuracy and robustness of the suggested algorithm is verified by several statistical examinations. It is shown that the suggested method results in an accurate solution with rapid convergence and a lower computational cost.