## Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 20. 2015

### Refine

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (15)
- Professur Angewandte Mathematik (8)
- Graduiertenkolleg 1462 (4)
- Institut für Strukturmechanik (4)
- Professur Informatik im Bauwesen (4)
- Institut für Konstruktiven Ingenieurbau (2)
- Juniorprofessur Stochastik und Optimierung (2)
- Professur Computer Vision in Engineering (2)
- Professur Baubetrieb und Bauverfahren (1)

#### Keywords

- Angewandte Informatik (35)
- Angewandte Mathematik (35)
- Building Information Modeling (35)
- Computerunterstütztes Verfahren (35)
- Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications (34)
- Data, information and knowledge modeling in civil engineering (1)
- Function theoretic methods and PDE in engineering sciences (1)
- Mathematical methods for (robotics and) computer vision (1)
- Numerical modeling in engineering (1)
- Optimization in engineering applications (1)

Over the last decade, the technology of constructing buildings has been dramatically developed especially with the huge growth of CAD tools that help in modeling buildings, bridges, roads and other construction objects. Often quality control and size accuracy in the factory or on construction site are based on manual measurements of discrete points. These measured points of the realized object or a part of it will be compared with the points of the corresponding CAD model to see whether and where the construction element fits into the respective CAD model. This process is very complicated and difficult even when using modern measuring technology. This is due to the complicated shape of the components, the large amount of manually detected measured data and the high cost of manual processing of measured values. However, by using a modern 3D scanner one gets information of the whole constructed object and one can make a complete comparison against the CAD model. It gives an idea about quality of objects on the whole. In this paper, we present a case study of controlling the quality of measurement during the constructing phase of a steel bridge by using 3D point cloud technology. Preliminary results show that an early detection of mismatching between real element and CAD model could save a lot of time, efforts and obviously expenses.

In order to minimize the probability of foundation failure resulting from cyclic action on structures, researchers have developed various constitutive models to simulate the foundation response and soil interaction as a result of these complex cyclic loads. The efficiency and effectiveness of these model is majorly influenced by the cyclic constitutive parameters. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model based identification of the cyclic constitutive parameters. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimization strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However for the back analysis (calibration) of the soil response to oscillatory load functions, this paper gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high quality solutions are obtained with minimum computational effort. Therefore model responses are produced which adequately describes what would otherwise be experienced in the laboratory or field.

The p-Laplace equation is a nonlinear generalization of the Laplace equation. This generalization is often used as a model problem for special types of nonlinearities. The p-Laplace equation can be seen as a bridge between very general nonlinear equations and the linear Laplace equation. The aim of this paper is to solve the p-Laplace equation for 2 < p < 3 and to find strong solutions. The idea is to apply a hypercomplex integral operator and spatial function theoretic methods to transform the p-Laplace equation into the p-Dirac equation. This equation will be solved iteratively by using a fixed point theorem.

The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference.
We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!