• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ
  • Institutes and partner institutions
  • Fakultät Bauingenieurwesen

Professur Werkstoffe des Bauens

Refine

Author

  • Reformat, Martin (1)
  • Trümer, André (1)

Keywords

  • Beton (2)
  • Mahlaggregat (1)
  • Mahlung (1)
  • Ton <Geologie> (1)
  • Vertical roller mill (1)
  • Zement (1)
  • Zementmahlung (1)

Year of publication

  • 2020 (2) (remove)

2 search hits

  • 1 to 2
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Zementmahlung - Untersuchungen zum Zusammenhang von Mahlaggregat und Materialeigenschaften (2020)
Reformat, Martin
Die Mahlung als Zerkleinerungsprozess stellt seit den Anfängen der Menschheit eine der wichtigsten Verarbeitungsformen von Materialien aller Art dar - von der Getreidemahlung, über das Aufschließen von Heilkräutern in Mörsern bis hin zur Herstellung von Tonern für Drucker und Kopierer. Besonders die Zementmahlung ist in modernen Gesellschaften sowohl ein wirtschaftlicher als auch ein ökologischer Faktor. Mehr als zwei Drittel der elektrischen Energie der Zementproduktion werden für Rohmehl- und Klinker- bzw. Kompositmaterialmahlung verbraucht. Dies ist nur ein Grund, warum der Mahlprozess zunehmend in den Fokus vieler Forschungs- und Entwicklungsvorhaben rückt. Die Komplexität der Zementmahlung steigt im zunehmenden Maße an. Die simple „Mahlung auf Zementfeinheit“ ist seit langem obsolet. Zemente werden maßgeschneidert, mit verschiedensten Kombinationsprodukten, getrennt oder gemeinsam, in unterschiedlichen Mahlaggregaten oder mit ganz neuen Ansätzen gefertigt. Darüber hinaus gewinnt auch der Sektor des Baustoffrecyclings, mit allen damit verbundenen Herausforderungen, immer mehr an Bedeutung. Bei der Fragestellung, wie der Mahlprozess einerseits leistungsfähige Produkte erzeugen kann und andererseits die zunehmenden Anforderungen an Nachhaltigkeit erfüllt, steht das Mahlaggregat im Mittelpunkt der Betrachtungen. Dementsprechend gliedert sich, neben einer eingehenden Literaturrecherche zum Wissensstand, die vorliegende Arbeit in zwei übergeordnete Teile: Im ersten Teil werden Untersuchungen an konventionellen Mahlaggregaten mit in der Zementindustrie verwendeten Kernprodukten wie Portlandzementklinker, Kalkstein, Flugasche und Hüttensand angestellt. Um eine möglichst effektive Mahlung von Zement und Kompositmaterialien zu gewährleisten, ist es wichtig, die Auswirkung von Mühlenparametern zu kennen. Hierfür wurde eine umfangreiche Versuchsmatrix aufgestellt und abgearbeitet. Das Spektrum der Analysemethoden war ebenfalls umfangreich und wurde sowohl auf die gemahlenen Materialien als auch auf die daraus hergestellten Zemente und Betone angewendet. Es konnte gezeigt werden, dass vor allem die Unterscheidung zwischen Mahlkörpermühlen und mahlkörperlosen Mühlen entscheidenden Einfluss auf die Granulometrie und somit auch auf die Zementperformance hat. Besonders stark wurden die Verarbeitungseigenschaften, insbesondere der Wasseranspruch und damit auch das Porengefüge und schließlich Druckfestigkeiten sowie Dauerhaftigkeitseigenschaften der aus diesen Zementen hergestellten Betone, beeinflusst. Bei Untersuchungen zur gemeinsamen Mahlung von Kalkstein und Klinker führten ungünstige Anreicherungseffekte des gut mahlbaren Kalksteins sowie tonigen Nebenbestandteilen zu einer schlechteren Performance in allen Zementprüfungen. Der zweite Teil widmet sich der Hochenergiemahlung. Die dahinterstehende Technik wird seit Jahrzehnten in anderen Wirtschaftsbranchen, wie der Pharmazie, Biologie oder auch Lebensmittelindustrie angewendet und ist seit einiger Zeit auch in der Zementforschung anzutreffen. Beispielhaft seien hier die Planeten- und Rührwerkskugelmühle als Vertreter genannt. Neben grundlegenden Untersuchungen an Zementklinker und konventionellen Kompositmaterialien wie Hüttensand und Kalkstein wurde auch die Haupt-Zementklinkerphase Alit untersucht. Die Hochenergiemahlung von konventionellen Kompositmaterialien generierte zusätzliche Reaktivität bei gleicher Granulometrie gegenüber der herkömmlichen Mahlung. Dies wurde vor allem bei per se reaktivem Zementklinker als auch bei latent-hydraulischem Hüttensand beobachtet. Gemahlene Flugaschen konnten nur im geringen Maße weiter aktiviert werden. Der generelle Einfluss von Oberflächenvergrößerung, Strukturdefekten und Relaxationseffekten eines Mahlproduktes wurden eingehend untersucht und gewichtet. Die Ergebnisse bei der Hochenergiemahlung von Alit zeigten, dass die durch Mahlung eingebrachten Strukturdefekte eine Erhöhung der Reaktivität zur Folge haben. Hierbei konnte festgestellt werden, das maßgeblich Oberflächendefekte, strukturelle (Volumen-)defekte und als Konterpart Selbstheilungseffekte die reaktivitätsbestimmenden Faktoren sind. Weiterhin wurden Versuche zur Mahlung von Altbetonbrechsand durchgeführt. Im Speziellen wurde untersucht, inwieweit eine Rückführung von Altbetonbrechsand, als unverwertbarer Teil des Betonbruchs, in Form eines Zement-Kompositmaterials in den Baustoffkreislauf möglich ist. Die hierfür verwendete Mahltechnik umfasst sowohl konventionelle Mühlen als auch Hochenergiemühlen. Es wurden Kompositzemente mit variiertem Recyclingmaterialanteil hergestellt und auf grundlegende Eigenschaften untersucht. Zur Bewertung der Produktqualität wurde der sogenannte „Aktivierungskoeffizient“ eingeführt. Es stellte sich heraus, dass die Rückführung von Altbetonbrechsand als potentielles Kompositmaterial wesentlich vom Anteil des Zementsteins abhängt. So konnte beispielsweise reiner Zementstein als aufgemahlenes Kompositmaterial eine bessere Performance gegenüber dem mit Gesteinskörnung beaufschlagtem Altbetonbrechsand ausweisen. Bezogen auf die gemessenen Hydratationswärmen und Druckfestigkeiten nahm der Aktivierungskoeffzient mit fallendem Abstraktionsgrad ab. Ebenfalls sank der Aktivierungskoeffizient mit steigendem Substitutionsgrad. Als Vergleich wurden dieselben Materialien in konventionellen Mühlen aufbereitet. Die hier erzielten Ergebnisse können teilweise der Hochenergiemahlung als gleichwertig beurteilt werden. Folglich ist bei der Aktivierung von Recyclingmaterialien weniger die Mahltechnik als der Anteil an aktivierbarem Zementstein ausschlaggebend.
Calcinierte Tone als Puzzolane der Zukunft - Von den Rohstoffen bis zur Wirkung im Beton (2020)
Trümer, André
Vor dem Hintergrund einer stetig wachsenden Nachfrage an Beton wie auch ambitionierter Reduktionsziele beim in der Zementproduktion anfallenden CO2 gelten calcinierte Tone als derzeit aussichtsreichste technische Neuerung im Bereich nachhaltiger Bindemittelkonzepte. Unter Ausnutzung ihrer Puzzolanität soll ein erheblicher Teil der Klinkerkomponente im Zement ersetzt werden, wobei der zu ihrer Aktivierung notwendige Energiebedarf vergleichsweise niedrig ist. Wesentliche Vorteile der Tone sind ihre weltweit nahezu unbegrenzte Verfügbarkeit sowie der äußerst geringe rohstoffbedingte CO2-Ausstoß während der Calcinierung. Schwierigkeiten auf dem Weg der Umsetzung bestehen allerdings in der Vielseitigkeit des Systems, welches durch eine hohe Varietät der Rohtone und des daraus folgenden thermischen Verhaltens gekennzeichnet ist. Entsprechend schwierig ist die Übertragbarkeit von Erfahrungen mit bereits etablierten calcinierten Tonen wie dem Metakaolin, der sich durch hohe Reinheit, einen aufwendigen Aufbereitungsprozess und eine entsprechend hohe Reaktivität auszeichnet. Ziel der Arbeit ist es daher, den bereits erlangten Kenntnisstand auf andere, wirtschaftlich relevante Tone zu erweitern und deren Eignung für die Anwendung im Beton herauszuarbeiten. In einem mehrstufigen Arbeitsprogramm wurde untersucht, inwieweit großtechnisch nutzbare Tone aktivierbar sind und welche Eigenschaften sich daraus für Zement und Beton ergeben. Die dabei festgestellte Reihenfolge Kaolinit > Montmorillonit > Illit beschreibt sowohl die Reaktivität der Brennprodukte als auch umgekehrt die Höhe der optimalen Calciniertemperatur. Auch wandelt sich der Charakter der entstandenen Metaphasen in dieser Abfolge von röntgenamorph und hochreaktiv zu glasig und reaktionsträge. Trotz dieser Einordnung konnte selbst mit dem Illit eine mit Steinkohlenflugasche vergleichbare Puzzolanität festgestellt werden. Dies bestätigte sich anschließend in Parameterversuchen, bei denen die Einflüsse von Rohstoffqualität, Calcinierung, Aufbereitung und Zement hinsichtlich der Reaktivitätsausbeute bewertet wurden. Die Bandbreite der erzielbaren Qualitäten ist dabei immens und gipfelt nicht zuletzt in stark unterschiedlichen Wirkungen auf die Festbetoneigenschaften. Hier machte sich vor allem die für Puzzolane typische Porenverfeinerung bemerkbar, sodass viele von Transportvorgängen abhängige Schadmechanismen unterdrückt wurden. Andere Schadex-positionen wie der Frostangriff ließen sich durch Zusatzmaßnahmen wie dem Eintrag von Luftporen beherrschen. Zu bemängeln sind vor allem die schlechte Verarbeitbarkeit kaolinitischer Metatone wie auch die für Puzzolane stark ausgeprägte Carbonatisierungsneigung. Wesentliches Ergebnis der Arbeit ist, dass auch Tone, die bisher als geringwertig bezüglich des Aktivierungspotentials galten, nutzbare puzzolanische Eigenschaften entwickeln können. So kann selbst ein stark verunreinigter Illit-Ton die Qualität von Flugasche erreichen. Mit stei-gendem Tonmineralgehalt sowie bei Präsens thermisch instabilerer Tonminerale wie Mont-morillonit und Kaolinit erweitert sich das Spektrum nutzbarer Puzzolanitäten bis hin zur hochreaktiven Metakaolin-Qualität. Damit lassen sich gute bis sehr gute Betoneigenschaften erzielen, sodass die Leistungsfähigkeit etablierter Kompositmaterialien erreicht wird. Somit sind die Voraussetzungen für eine umfangreiche Nutzung der erheblichen Tonmengen im Zement und Beton gegeben. Entsprechend können Tone einen effektiven Beitrag zu einer gesteigerten Nachhaltigkeit in der Baustoffproduktion weltweit leisten.
  • 1 to 2
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018