Professur Content Management - Web-Technologien (ab 2023 Professur Intelligente Informationssysteme)
Refine
Document Type
- Doctoral Thesis (8)
- Article (2)
- Bachelor Thesis (1)
- Master's Thesis (1)
Keywords
- Information Retrieval (4)
- Argumentation (2)
- Machine Learning (2)
- Amazon Alexa (1)
- Argument (1)
- Argumentation Strategies (1)
- Assistent (1)
- Aufsatz (1)
- Computational Argumentation (1)
- Data Mining (1)
In ten chapters, this thesis presents information retrieval technology which is tailored to the research activities that arise in the context of corpus-based digital humanities projects.
The presentation is structured by a conceptual research process that is introduced in Chapter 1. The process distinguishes a set of five research activities: research question generation, corpus acquisition, research question modeling, corpus annotation, and result dissemination. Each of these research activities elicits different information retrieval tasks with special challenges, for which algorithmic approaches are presented after an introduction of the core information retrieval concepts in Chapter 2.
A vital concept in many of the presented approaches is the keyquery paradigm introduced in Chapter 3, which represents an operation that returns relevant search queries in response to a given set of input documents. Keyqueries are proposed in Chapter 4 for the recommendation of related work, and in Chapter 5 for improving access to aspects hidden in the long tail of search result lists.
With pseudo-descriptions, a document expansion approach is presented in Chapter 6. The approach improves the retrieval performance for corpora where only bibliographic meta-data is originally available. In Chapter 7, the keyquery paradigm is employed to generate dynamic taxonomies for corpora in an unsupervised fashion.
Chapter 8 turns to the exploration of annotated corpora, and presents scoped facets as a conceptual extension to faceted search systems, which is particularly useful in exploratory search settings. For the purpose of highlighting the major topical differences in a sequence of sub-corpora, an algorithm called topical sequence profiling is presented in Chapter 9.
The thesis concludes with two pilot studies regarding the visualization of (re)search results for the means of successful result dissemination: a metaphoric interpretation of the information nutrition label, as well as the philosophical bodies, which are 3D-printed search results.
With the growing importance of the World Wide Web, the major challenges our society faces are also increasingly affecting the digital areas of our lives. Some of the associated problems can be addressed by computer science, and some of these specifically by data-driven research. To do so, however, requires to solve open issues related to archive quality and the large volume and variety of the data contained.
This dissertation contributes data, algorithms, and concepts towards leveraging the big data and temporal provenance capabilities of web archives to tackle societal challenges. We selected three such challenges that highlight the central issues of archive quality, data volume, and data variety, respectively:
(1) For the preservation of digital culture, this thesis investigates and improves the automatic quality assurance of the web page archiving process, as well as the further processing of the resulting archive data for automatic analysis.
(2) For the critical assessment of information, this thesis examines large datasets of Wikipedia and news articles and presents new methods for automatically determining quality and bias.
(3) For digital security and privacy, this thesis exploits the variety of content on the web to quantify the security of mnemonic passwords and analyzes the privacy-aware re-finding of the various seen content through private web archives.
Few studies have investigated how search behavior affects complex writing tasks. We analyze a dataset of 150 long essays whose authors searched the ClueWeb09 corpus for source material, while all querying, clicking, and writing activity was meticulously recorded. We model the effect of search and writing behavior on essay quality using path analysis. Since the boil-down and build-up writing strategies identified in previous research have been found to affect search behavior, we model each writing strategy separately. Our analysis shows that the search process contributes significantly to essay quality through both direct and mediated effects, while the author's writing strategy moderates this relationship. Our models explain 25–35% of the variation in essay quality through rather simple search and writing process characteristics alone, a fact that has implications on how search engines could personalize result pages for writing tasks. Authors' writing strategies and associated searching patterns differ, producing differences in essay quality. In a nutshell: essay quality improves if search and writing strategies harmonize—build-up writers benefit from focused, in-depth querying, while boil-down writers fare better with a broader and shallower querying strategy.
Compiling and disseminating information about incidents and disasters are key to disaster management and relief. But due to inherent limitations of the acquisition process, the required information is often incomplete or missing altogether. To fill these gaps, citizen observations spread through social media are widely considered to be a promising source of relevant information, and many studies propose new methods to tap this resource. Yet, the overarching question of whether and under which circumstances social media can supply relevant information (both qualitatively and quantitatively) still remains unanswered. To shed some light on this question, we review 37 disaster and incident databases covering 27 incident types, compile a unified overview of the contained data and their collection processes, and identify the missing or incomplete information. The resulting data collection reveals six major use cases for social media analysis in incident data collection: (1) impact assessment and verification of model predictions, (2) narrative generation, (3) recruiting citizen volunteers, (4) supporting weakly institutionalized areas, (5) narrowing surveillance areas, and (6) reporting triggers for periodical surveillance. Furthermore, we discuss the benefits and shortcomings of using social media data for closing information gaps related to incidents and disasters.
The computational analysis of argumentation strategies is substantial for many downstream applications. It is required for nearly all kinds of text synthesis, writing assistance, and dialogue-management tools. While various tasks have been tackled in the area of computational argumentation, such as argumentation mining and quality assessment, the task of the computational analysis of argumentation strategies in texts has so far been overlooked.
This thesis principally approaches the analysis of the strategies manifested in the persuasive argumentative discourses that aim for persuasion as well as in the deliberative argumentative discourses that aim for consensus. To this end, the thesis presents a novel view of argumentation strategies for the above two goals. Based on this view, new models for pragmatic and stylistic argument attributes are proposed, new methods for the identification of the modelled attributes have been developed, and a new set of strategy principles in texts according to the identified attributes is presented and explored.
Overall, the thesis contributes to the theory, data, method, and evaluation aspects of the analysis of argumentation strategies. The models, methods, and principles developed and explored in this thesis can be regarded as essential for promoting the applications mentioned above, among others.
Die zu beobachtenden kürzeren Produktlebenszyklen und eine schnellere Marktdurchdringung von Produkttechnologien erfordern adaptive und leistungsfähige Produktionsanlagen. Die Adaptivität ermöglicht eine Anpassung der Produktionsanlage an neue Produkte, und die Leistungsfähigkeit der Anlage stellt sicher, dass ausreichend Produkte in kurzer Zeit und zu geringen Kosten hergestellt werden können. Durch eine Modularisierung der Produktionsanlage kann die Adaptivität erreicht werden. Jedoch erfordert heutzutage jede Adaption manuellen Aufwand, z.B. zur Anpassung von proprietären Signalen oder zur Anpassung übergeordneter Funktionen. Dadurch sinkt die Leistungsfähigkeit der Anlage.
Das Ziel dieser Arbeit ist es, die Interoperabilität in Bezug auf die Informationsverwendung in modularen Produktionsanlagen zu gewährleisten. Dazu werden Informationen durch semantische Modelle beschrieben. Damit wird ein einheitlicher Informationszugriff ermöglicht, und übergeordnete Funktionen erhalten Zugriff auf alle Informationen der Produktionsmodule, unabhängig von dem Typ, dem Hersteller und dem Alter des Moduls. Dadurch entfällt der manuelle Aufwand bei Anpassungen des modularen Produktionssystems, wodurch die Leistungsfähigkeit der Anlage gesteigert und Stillstandszeiten reduziert werden.
Nach dem Ermitteln der Anforderungen an einen Modellierungsformalismus wurden potentielle Formalismen mit den Anforderungen abgeglichen. OWL DL stellte sich als geeigneter Formalismus heraus und wurde für die Erstellung des semantischen Modells in dieser Arbeit verwendet. Es wurde exemplarisch ein semantisches Modell für die drei Anwendungsfälle Interaktion, Orchestrierung und Diagnose erstellt. Durch einen Vergleich der Modellierungselemente von unterschiedlichen Anwendungsfällen wurde die Allgemeingültigkeit des Modells bewertet. Dabei wurde gezeigt, dass die Erreichung eines allgemeinen Modells für technische Anwendungsfälle möglich ist und lediglich einige Hundert Begriffe benötigt.
Zur Evaluierung der erstellten Modelle wurde ein wandlungsfähiges Produktionssystem der SmartFactoryOWL verwendet, an dem die Anwendungsfälle umgesetzt wurden. Dazu wurde eine Laufzeitumgebung erstellt, die die semantischen Modelle der einzelnen Module zu einem Gesamtmodell vereint, Daten aus der Anlage in das Modell überträgt und eine Schnittstelle für die Services bereitstellt. Die Services realisieren übergeordnete Funktionen und verwenden die Informationen des semantischen Modells. In allen drei Anwendungsfällen wurden die semantischen Modelle korrekt zusammengefügt und mit den darin enthaltenen Informationen konnte die Aufgabe des jeweiligen Anwendungsfalles ohne zusätzlichen manuellen Aufwand gelöst werden.
The task-based view of web search implies that retrieval should take the user perspective into account. Going beyond merely retrieving the most relevant result set for the current query, the retrieval system should aim to surface results that are actually useful to the task that motivated the query.
This dissertation explores how retrieval systems can better understand and support their users’ tasks from three main angles: First, we study and quantify search engine user behavior during complex writing tasks, and how task success and behavior are associated in such settings. Second, we investigate search engine queries formulated as questions, and explore patterns in a large query log that may help search engines to better support this increasingly prevalent interaction pattern. Third, we propose a novel approach to reranking the search result lists produced by web search engines, taking into account retrieval axioms that formally specify properties of a good ranking.
Diese Arbeit beschäftigt sich mit der Nutzung von Worteinbettungen in der automatischen Analyse von argumentativen Texten. Die Arbeit diskutiert wichtige Einstellungen des Einbettungsverfahren sowie diverse Anwendungsmethoden der eingebetteten Wortvektoren für drei Aufgaben der automatischen argumentativen Analyse: Textsegmentierung, Argumentativitäts-Klassifikation und Relationenfindung. Meine Experimente auf zwei Standard-Argumentationsdatensätzen zeigen die folgenden Haupterkenntnisse: Bei der Textsegmentierung konnten keine Verbesserungen erzielt werden, während in der Argumentativitäts-Klassifikation und der Relationenfindung sich kleine Erfolge gezeigt haben und weitere bestimmte Forschungsthesen bewahrheitet werden konnten. In der Diskussion wird darauf eingegangen, warum bei der einfachen Worteinbettung in der argumentativen Analyse sich kaum nutzbare Ergebnisse erzielen lassen konnten, diese sich aber in Zukunft durch erweiterte Worteinbettungsverfahren verbessern können.
The need for finding persuasive arguments can arise in a variety of domains such as politics, finance, marketing or personal entertainment. In these domains, there is a demand to make decisions by oneself or to convince somebody about a specific topic. To obtain a conclusion, one has to search thoroughly different sources in literature and on the web to compare various arguments. Voice interfaces, in form of smartphone applications or smart speakers, present the user with natural conversations in a comfortable way to make search requests in contrast to a traditional search interface with keyboard and display. Benefits and obstacles of such a new interface are analyzed by conducting two studies. The first one consists of a survey for analyzing the target group with questions about situations, motivations, and possible demanding features. The latter one is a wizard-of-oz experiment to investigate possible queries on how a user formulates requests to such a novel system. The results indicate that a search interface with conversational abilities can build a helpful assistant, but to satisfy the demands of a broader audience some additional information retrieval and visualization features need to be implemented.
Web applications that are based on user-generated content are often criticized for containing low-quality information; a popular example is the online encyclopedia Wikipedia. The major points of criticism pertain to the accuracy, neutrality, and reliability of information. The identification of low-quality information is an important task since for a huge number of people around the world it has become a habit to first visit Wikipedia in case of an information need. Existing research on quality assessment in Wikipedia either investigates only small samples of articles, or else deals with the classification of content into high-quality or low-quality. This thesis goes further, it targets the investigation of quality flaws, thus providing specific indications of the respects in which low-quality content needs improvement. The original contributions of this thesis, which relate to the fields of user-generated content analysis, data mining, and machine learning, can be summarized as follows:
(1) We propose the investigation of quality flaws in Wikipedia based on user-defined cleanup tags. Cleanup tags are commonly used in the Wikipedia community to tag content that has some shortcomings. Our approach is based on the hypothesis that each cleanup tag defines a particular quality flaw.
(2) We provide the first comprehensive breakdown of Wikipedia's quality flaw structure. We present a flaw organization schema, and we conduct an extensive exploratory data analysis which reveals (a) the flaws that actually exist, (b) the distribution of flaws in Wikipedia, and, (c) the extent of flawed content.
(3) We present the first breakdown of Wikipedia's quality flaw evolution. We consider the entire history of the English Wikipedia from 2001 to 2012, which comprises more than 508 million page revisions, summing up to 7.9 TB. Our analysis reveals (a) how the incidence and the extent of flaws have evolved, and, (b) how the handling and the perception of flaws have changed over time.
(4) We are the first who operationalize an algorithmic prediction of quality flaws in Wikipedia. We cast quality flaw prediction as a one-class classification problem, develop a tailored quality flaw model, and employ a dedicated one-class machine learning approach. A comprehensive evaluation based on human-labeled Wikipedia articles underlines the practical applicability of our approach.