Professur Bauphysik
Refine
Document Type
- Article (20)
- Conference Proceeding (8)
- Bachelor Thesis (6)
- Master's Thesis (5)
- Doctoral Thesis (4)
- Preprint (3)
- Report (2)
- Study Thesis (2)
Institute
Keywords
- Bauphysik (10)
- Raumklima (8)
- Bauklimatik (5)
- computational fluid dynamics (5)
- Acoustic Travel-Time Tomography (4)
- Simulation (4)
- Strömungsmechanik (4)
- Akustische Laufzeit-Tomographie (3)
- BIM (3)
- Belüftung (3)
One of the main criteria determining the thermal comfort of occupants is the air temperature. To monitor this parameter, a thermostat is traditionally mounted in the indoor environment for instance in office rooms in the workplaces, or directly on the radiator or in another location in a room. One of the drawbacks of this conventional method is the measurement at a certain location instead of the temperature distribution in the entire room including the occupant zone. As a result, the climatic conditions measured at the thermostat point may differ from those at the user's location. This not only negatively impacts the thermal comfort assessment but also leads to a waste of energy due to unnecessary heating and cooling. Moreover, for measuring the distribution of the air temperature under laboratory conditions, multiple thermal sensors should be installed in the area under investigation. This requires high effort in both installation and expense.
To overcome the shortcomings of traditional sensors, Acoustic travel-time TOMography (ATOM) offers an alternative based on measuring the transmission sound velocity signals. The basis of the ATOM technique is the first-order dependency of the sound velocity on the medium's temperature. The average sound velocity, along the propagation paths, can be determined by travel-times estimation of a defined acoustic signal between transducers. After the travel-times collection, the room is divided into several volumetric grid cells, i.e. voxels, whose sizes are defined depending on the dimension of the room and the number of sound paths. Accordingly, the spatial air temperature in each voxel can be determined using a suitable tomographic algorithm. Recent studies indicate that despite the great potential of this technique to detect room climate, few experiments have been conducted.
This thesis aims to develop the ATOM technique for indoor climatic applications while coupling the analysis methods of tomography and room acoustics. The method developed in this thesis uses high-energy early reflections in addition to the direct paths between transducers for travel time estimation. In this way, reflections can provide multiple sound paths that allow the room coverage to be maintained even when a few or even only one transmitter and receiver are used.
In the development of the ATOM measurement system, several approaches have been employed, including the development of numerical methods and simulations and conducting experimental measurements, each of which has contributed to the improvement of the system's accuracy. In order to effectively separate the early reflections and ensure adequate coverage of the room with sound paths, a numerical method was developed based on the optimization of the coordinates of the sound transducers in the test room. The validation of the optimal positioning method shows that the reconstructed temperatures were significantly improved by placing the transducers at the optimal coordinates derived from the developed numerical method. The other numerical method developed is related to the selection of the travel times of the early reflections. Accordingly, the detection of the travel times has been improved by adjusting the lengths of the multiple analysis time-windows according to the individual travel times in the reflectogram of the room impulse response. This can reduce the probability of trapping faulty travel times in the analysis time-windows.
The simulation model used in this thesis is based on the image source model (ISM) method for simulating the theoretical travel times of early reflection sound paths. The simulation model was developed to simulate the theoretical travel times up to third-order reflections.
The empirical measurements were carried out in the climate lab of the Chair of Building Physics under different boundary conditions, i.e., combinations of different room air temperatures under both steady-state and transient conditions, and different measurement setups. With the measurements under controllable conditions in the climate lab, the validity of the developed numerical methods was confirmed.
In this thesis, the performance of the ATOM measurement system was evaluated using two measurement setups. The setup for the initial investigations consists of an omnidirectional receiver and a near omnidirectional sound source, keeping the number of transducers as few as possible. This has led to accurately identify the sources of error that could occur in each part of the measuring system. The second measurement setup consists of two directional sound sources and one omnidirectional receiver. This arrangement of transducers allowed a higher number of well-detected travel times for tomography reconstruction, a better travel time estimation due to the directivity of the sound source, and better space utilization. Furthermore, this new measurement setup was tested to determine an optimal selection of the excitation signal. The results showed that for the utilized setup, a linear chirp signal with a frequency range of 200 - 4000 Hz and a signal duration of t = 1 s represents an optimal selection with respect to the reliability of the measured travel times and higher signal-to-noise ratio (SNR).
To evaluate the performance of the measuring setups, the ATOM temperatures were always compared with the temperatures of high-resolution NTC thermistors with an accuracy of ±0.2 K. The entire measurement program, including acoustic measurements, simulation, signal processing, and visualization of measurement results are performed in MATLAB software.
In addition, to reduce the uncertainty of the positioning of the transducers, the acoustic centre of the loudspeaker was determined experimentally for three types of excitation signals, namely MLS (maximum length sequence) signals with different lengths and duration, linear and logarithmic chirp signals with different defined frequency ranges. For this purpose, the climate lab was converted into a fully anechoic chamber by attaching absorption panels to the entire surfaces of the room. The measurement results indicated that the measurement of the acoustic centre of the sound source significantly reduces the displacement error of the transducer position.
Moreover, to measure the air temperature in an occupied room, an algorithm was developed that can convert distorted signals into pure reference signals using an adaptive filter. The measurement results confirm the validity of the approach for a temperature interval of 4 K inside the climate lab.
Accordingly, the accuracy of the reconstructed temperatures indicated that ATOM is very suitable for measuring the air temperature distribution in rooms.
Physical exercise demonstrates a special case of aerosol emission due to its associated elevated breathing rate. This can lead to a faster spread of airborne viruses and respiratory diseases. Therefore, this study investigates cross-infection risk during training. Twelve human subjects exercised on a cycle ergometer under three mask scenarios: no mask, surgical mask, and FFP2 mask. The emitted aerosols were measured in a grey room with a measurement setup equipped with an optical particle sensor. The spread of expired air was qualitatively and quantitatively assessed using schlieren imaging. Moreover, user satisfaction surveys were conducted to evaluate the comfort of wearing face masks during training. The results indicated that both surgical and FFP2 masks significantly reduced particles emission with a reduction efficiency of 87.1% and 91.3% of all particle sizes, respectively. However, compared to surgical masks, FFP2 masks provided a nearly tenfold greater reduction of the particle size range with long residence time in the air (0.3–0.5 μm). Furthermore, the investigated masks reduced exhalation spreading distances to less than 0.15 m and 0.1 m in the case of the surgical mask and FFP2 mask, respectively. User satisfaction solely differed with respect to perceived dyspnea between no mask and FFP2 mask conditions.
This article focuses on further developments of the background-oriented schlieren (BOS) technique to visualize convective indoor air flow, which is usually defined by very small density gradients. Since the light rays deflect when passing through fluids with different densities, BOS can detect the resulting refractive index gradients as integration along a line of sight. In this paper, the BOS technique is used to yield a two-dimensional visualization of small density gradients. The novelty of the described method is the implementation of a highly sensitive BOS setup to visualize the ascending thermal plume from a heated thermal manikin with temperature differences of minimum 1 K. To guarantee steady boundary conditions, the thermal manikin was seated in a climate laboratory. For the experimental investigations, a high-resolution DLSR camera was used capturing a large field of view with sufficient detail accuracy. Several parameters such as various backgrounds, focal lengths, room air temperatures, and distances between the object of investigation, camera, and structured background were tested to find the most suitable parameters to visualize convective indoor air flow. Besides these measurements, this paper presents the analyzing method using cross-correlation algorithms and finally the results of visualizing the convective indoor air flow with BOS. The highly sensitive BOS setup presented in this article complements the commonly used invasive methods that highly influence weak air flows.
Die Auswirkungen einer Fassadenbegrünung auf den Wärmeinseleffekt in Stuttgart wurde für eine Hitzeperiode numerisch simuliert und bewertet. Die Ergebnisse zeigten positive Auswirkungen innerhalb des Simulationsgebiets sowie eine geringe Fernwirkung auf benachbarte Stadtquartiere. Diese Änderungen können zur Verbesserung des thermischen Komforts im Außenraum beitragen. Eine reduzierte Temperatur der Außenoberfläche führt darüber hinaus auch zu einer geringeren Oberflächentemperatur der Wandinnenseite, welche die Innenraumtemperatur beeinflusst. Folglich kann die thermische Behaglichkeit auch im Innenraum erhöht werden.
Reconstruction of the indoor air temperature distribution using acoustic travel-time tomography
(2021)
Acoustic travel-time tomography (ATOM) is being increasingly considered recently as a remote sensing methodology to determine the indoor air temperatures distribution. It employs the relationship between the sound velocities along sound-paths and their related travel-times through measured room-impulse-response (RIR). Thus, the precise travel-time estimation is of critical importance which can be performed by applying an analysis time-window method. In this study, multiple analysis time-windows with different lengths are proposed to overcome the challenge of accurate detection of the travel-times at RIR. Hence, the ATOM-temperatures distribution has been measured at the climate chamber lab of the Bauhaus-University Weimar. As a benchmark, the temperatures of NTC thermistors are compared to the reconstructed temperatures derived from the ATOM technique illustrating this technique can be a reliable substitute for traditional thermal sensors. The numerical results indicate that the selection of an appropriate analysis time-window significantly enhances the accuracy of the reconstructed temperatures distribution.
The technique of Acoustic travel-time TOMography (ATOM) allows for measuring the distribution of air temperatures throughout the entire room based on the determined sound-travel-times of early reflections, currently up to second order reflections. The number of detected early reflections in the room impulse response (RIR) which stands for the desired sound paths inside the room, has a significant impact on the resolution of reconstructed temperatures. This study investigates the possibility of utilizing an array of directional sound sources for ATOM measurements instead of a single omnidirectional loudspeaker used in the previous studies [1–3]. The developed measurement setup consists of two directional sound sources placed near the edge of the floor in the climate chamber of the Bauhaus-University Weimar and one omnidirectional receiver at center of the room near the ceiling. In order to compensate for the reduced number of sound paths when using directional sound sources, it is proposed to take high-energy early reflections up to third order into account. For this purpose, the simulated travel times up to third-order image sources were implemented in the image source model (ISM) algorithm, by which these early reflections can be detected effectively for air temperature reconstructions. To minimize the uncertainties of travel-times estimation due to the positioning of the sound transducers inside the room, measurements were conducted to determine the exact emitting point of the utilized sound source i.e. its acoustic center (AC). For these measurements, three types of excitation signals (MLS, linear and logarithmic chirp signals) with various frequency ranges were used considering that the acoustic center of a sound source is a frequency dependent parameter [4]. Furthermore, measurements were conducted to determine an optimum excitation signal based on the given condition of the ATOM measurement set-up which defines an optimum method for the RIR estimation correspondingly. Finally, the uncertainty of the measuring system utilizing an array of directional sound sources was analyzed.
This study investigates the flow supplied by personalized ventilation (PV) by means of anemometer measurements and schlieren visualization. The study was conducted using a thermal manikin to simulate a seated occupant facing a PV outlet. Air velocity was measured at multiple points in the flow field; the collected velocity values were used to calculate the turbulence intensity. Results indicated that PV was supplying air with low turbulence intensity that was able to penetrate the convective boundary layer of the manikin to supply clean air for inhalation. The convective boundary layer, however, obstructed the supplied flow and reduced its velocity by a total of 0.26 m/s. The PV flow preserved its value until about 10 cm from the face where velocity started to drop. Further investigations were conducted to test a PV diffuser with a relatively large outlet diameter (18 cm). This diffuser was developed using 3d-modelling and 3d-printing. The diffuser successfully distributed the flow over the larger outlet area. However, the supplied velocity and turbulence fields were not uniform across the section.
Kleine Kommunen im ländlichen Raum sind aufgrund ihrer oft eingeschränkten personellen und finanziellen Kapazitäten bisher eher sporadisch in den Themenfeldern Energieeffizienz und Erneuerbare Energien aktiv. Immer wieder stellt sich daher Frage, wie die Klimaschutzstrategien des Bundes und der Länder dort mit dem verfügbaren Personal kostengünstig realisierbar sind. Vor diesem Hintergrund wird ein Werkzeug entwickelt, mit dessen Hilfe der aktive Einstieg in diese Thematik mit geringen Aufwand und überwiegend barrierefrei möglich ist.
Der Aufbau eines prozessorientierten Entwicklungs- und Moderationsmodells zur Erprobung und Umsetzung bezahlbarer Handlungsoptionen für Energieeinsparungen und effizienten Energieeinsatz im überwiegend ländlichen geprägten Raum ist der Schwerpunkt der Softwarelösung.
Kommunen werden mit deren Hilfe in die Lage versetzt, in die notwendigen Prozesse der Energie- und Wärmewende einzusteigen. Dabei soll der modulare Aufbau die regulären Schritte notwendiger (integrierter) Planungsprozesse nicht vollständig ersetzen. Vielmehr können innerhalb der Online-Anwendung - überwiegend automatisiert - konkrete Maßnahmenvorschläge erstellt werden, die ein solides Fundament der künftigen energetischen Entwicklung der Kommunen darstellen.
Für eine gezielte Validierung der Ergebnisse und der Ableitung potentieller Maßnahmen werden für die Erprobung Modellkommunen in Thüringen, Bayern und Hessen als Reallabore einbezogen.
Das Tool steht bisher zunächst nur den beteiligten Modellkommunen zur Verfügung. Die entwickelte Softwarelösung soll künftig Schritt für Schritt allen interessierten Kommunen mit diversen Hilfsmitteln und einer Vielzahl anderer praktischer Bestandteile zur Verfügung gestellt werden.
Bei Analysen des Gebäudebestands im Quartierskontext werden zu Dokumentationszwecken viele Bilddaten erzeugt. Diese Daten sind im Nachhinein häufig keinen eindeutig genauen Standorten und Blickwinkeln auf das Bauwerk zuzuordnen. Insbesondere gilt dies für Ortsunkundige oder für Detailaufnahmen. Eine zusätzliche Herausforderung stellt die Aufnahme von Wärmebrücken- oder andersartigen Gebäudedetails durch Thermogramme dar. In der Praxis kommen hier oftmals analoge, fehleranfällige Lösungen zum Einsatz.
Durch die Nutzung von Georeferenzierung kann diese Lücke geschlossen und eine eindeutige Kommunikation und Auswertung gewährleistet werden. Im Gegensatz zu den üblichen Kameras sind Smartphones nach Stand der Technik ausreichend ausgestattet, um neben Daten zu Standort auch die Orientierungswinkel einer Bildaufnahme zu dokumentieren. Die georefenzierten Bilder können auf Grundlage der in den sogenannten Exif-Daten mitgeschriebenen Informationen händisch in ein bestehendes Quartiersmodell integriert werden.
Anhand eines universitären Musterquartiers wird die nutzerfreundliche Realisierung beispielhaft erprobt und auf ihre Potentiale zur Automatisierung in Python untersucht. Hierfür wurde ein bestehendes Quartiersmodell als geometrische Grundlage genutzt und um RGB-Bilder sowie Thermogramme erweitert. Das beschriebene Vorgehen wird im Rahmen der Anwendung auf seinen möglichen Einsatz im Rahmen einer energetischen Quartierserfassung sowie einer Bauschadensdokumentation untersucht.
Mit dem vorliegenden Beitrag wird dem Nutzenden ein Werkzeug bereitgestellt, das die hochwertige Dokumentation einer Bestandserfassung, auch im Quartierskontext, ermöglicht.
Acoustic travel-time TOMography (ATOM) allows the measurement and reconstruction of air temperature distributions. Due to limiting factors, such as the challenge of travel-time estimation of the early reflections in the room impulse response, which heavily depends on the position of transducers inside the measurement area, ATOM is applied mainly outdoors. To apply ATOM in buildings, this paper presents a numerical solution to optimize the positions of transducers. This optimization avoids reflection overlaps, leading to distinguishable travel-times in the impulse response reflectogram. To increase the accuracy of the measured temperature within tomographic voxels, an additional function is employed to the proposed numerical method to minimize the number of sound-path-free voxels, ensuring the best sound-ray coverage of the room. Subsequently, an experimental set-up has been performed to verify the proposed numerical method. The results indicate the positive impact of the optimal positions of transducers on the distribution of ATOM-temperatures.