Professur Massivbau II
Refine
Document Type
- Master's Thesis (4)
- Doctoral Thesis (2)
Keywords
- Glasfaserverstärkter Kunststoff (2)
- Beton (1)
- Brückenbau (1)
- Direkte numerische Simul (1)
- Effizienz (1)
- Effizienzwertmethode (1)
- Etabs (1)
- Experiment (1)
- FOMEKK (1)
- FVK (1)
Druckbeanspruchte Bauteile aus Beton können mit zugfesten Umschnürungen von außen verstärkt werden. Mit dieser etablierten Methode konnten axiale Traglast und Duktilität von unzureichend bewehrten Stützen bereits verbessert werden. Es wurde jedoch festgestellt, dass der umschnürte Betonkern dennoch an Festigkeit verliert. Um die Wirksamkeit der Umschnürung zu erhöhen, wird deshalb vorgeschlagen, das umschnürende Material vorzuspannen. Dieser Vorschlag wird insbesondere von der neuen Materialgruppe der Formgedächtnislegierungen inspiriert, die thermisch vorspannbar sind.
Bisher sind die Auswirkungen der Vorspannung einer Umschnürung auf das Tragverhalten von Betondruckgliedern kaum untersucht worden. Diese Lücke wird durch systematische Versuche an Betonzylindern mit vorgespannter Umschnürung aus Stahl und kohlenstofffaserverstärktem Kunststoff geschlossen. Die Abbildung der Versuchsergebnisse durch geeignete Modelle ermöglicht auch Aussagen zum Verhalten von Betondruckgliedern mit Umschnürungen aus anderen Materialien, beispielsweise Formgedächtnislegierungen. Um diese in den Berechnungen zu simulieren, wird eine für das Bauwesen infrage kommende eisenbasierte Legierung in separaten axialen Versuchen charakterisiert und thermisch vorgespannt. Die in der vorliegenden Arbeit entwickelten neuen Modelle orientieren sich im Wesentlichen an zwei Zielen: dem Abbilden des mehraxialen Spannungs-Dehnungs-Verhaltens des vorgespannt umschnürten Betons und dem Berechnen der Restfestigkeit des Betons.
Die durchgeführten Versuche und Parameterstudien auf Basis der Modelle zeigen: Die Vorspannung der Umschnürung beeinflusst vor allem die Restfestigkeit des Betons wesentlich. Die gewonnenen Erkenntnisse und neuen Methoden können eingesetzt werden, um das Tragverhalten von Betondruckgliedern mit Umschnürungen aus Stahl, faserverstärktem Kunststoff oder Formgedächtnislegierungen zu bewerten.
In der vorliegenden Arbeit wird eine kraftschlüssige Verbindungstechnik für modulare, schalenartige Faserverbundbauteile vorgestellt. Die Verbindung basiert auf der Verklebung mit lokal begrenzten Stahlblechen. Aus dem Verbindungsansatz wird die Verklebung zwischen Stahl und Faserverbundkunststoff vertiefend betrachtet. Ziel sind die Wahl von technologischen Randbedingungen, die Erarbeitung eines Vorschlages zur numerischen Berechnung und Bemessung und die Formulierung konstruktiver Empfehlungen zum Entwurf von Verklebungen. Mechanische Kennwerte werden in Zugversuchen ermittelt und direkt auf die nichtlinearen Berechnungen übertragen. Technologische Einflüsse und die Streuungen aus realen Verklebungen werden über die Nachrechnung von Zugscherversuchen in die Bemessung integriert. Es wird gezeigt, dass die Verklebungen ausreichende Festigkeiten und ein zufriedenstellendes Bruchverhalten aufweisen. Die Kombination aus einer Werkstattverklebung und einer baustellengerechten Montage ermöglicht eine materialgerechte und effiziente Verbindungen für Faserverbundkonstruktionen unter den Randbedingungen des Bauwesens.
Energie-basierte Auslegung von Tragsystemen für Hochhäuser in Abhängigkeit von der Größenordnung
(2010)
Angelehnt an Entwicklungen des aktuellen Hochhausbaus, die Gebäudehöhen von über 600 m vorsehen, behandelt die vorliegende Arbeit Möglichkeiten der Konzeption von Aussteifungssystemen. Ein ausgewähltes Tragwerk aus Stahlbetonschubwänden und einer Höhe von 800 m wird mit der 3D-Analyse-Software ETABS (Version 9.0.9) bemessen. Dieses Tragwerk wird mit extremen Einwirkungen infolge Wind und Erdbeben belastet. Da ein solch hohes Gebäude außerhalb der Anwendungsgrenzen internationaler Normen liegt, wird ein eigener Ansatz für den Lastfall Wind zur Analyse des Schwingungsverhaltens gewählt. Aufbauend auf den Ergebnissen der Analyse werden Möglichkeiten der Reduktion bzw. Dämpfung von kritischen Gebäudeschwingungen diskutiert. Die konkrete Dämpfungsvariante „Passiver Schwingungsdämpfer“ (Tuned Mass Damper) wird, unter Verwendung von Optimierungskriterien, in ETBAS modelliert und in die Berechnungen eingebunden. Dieses Tragwerk wird zwei kleineren Tragwerken (H = 200 m bzw. 400 m) gegenübergestellt und mittels dem MIPS-Konzept (Material-Input pro Serviceeinheit) analysiert. Ziel ist es dabei, qualitative Aussagen zur Nachhaltigkeit und ökologischer Effizienz besonders hoher Gebäude zu treffen.
In dieser Diplomarbeit mit dem Thema „Modellierung von Fußgängerbrücken aus faserverstärktem Kunststoff“ wird ein Tragwerk aus glasfaserverstärktem Kunststoff für eine Fußgängerbrücke mit 10,0 m Stützweite entwickelt, untersucht und hinsichtlich der Dimensionierung und Konstruktion analysiert. Inhaltlich wird hierzu in den Vorbetrachtungen zum Thema auf vorhandene Beispiele für Brückentragwerke aus faserverstärkten Kunststoffen eingegangen. Es werden die im Rahmen der Diplomarbeit wichtigen Sachverhalte hinsichtlich des Materials der faserverstärkten Kunststoffe (FVK) und auch die erforderlichen Grundlagen für die Berechnungen gegeben. Nach der Vorstellung verschiedener Ideen für Tragwerksquerschnitte erfolgt als Schwerpunkt der Diplomarbeit die rechnergestützte Modellierung und Berechnung einer Vorzugsvariante sowie die Auswertung und Analyse der Berechnungsergebnisse. Abschließend wird das entwickelte Tragwerk bewertet und es werden weitere Entwicklungsmöglichkeiten aufgezeigt.
Der Einsatz von Glasfaserverstärkten Kunststoffen im Verbundbrückenbau wurde überprüft. Hierzu wurden Vergleichsbrücken in Stahl / Beton und GFK / Beton entwickelt und vergleichend überprüft. Im Vergleich wurden nicht nur die Kriterien der Tragfähigkeit und Gebrauchstauglichkeit sondern auch ökonomisch günstige sowie ökologisch vertretbare Faktoren betrachtet. Der Vergleich der Bauweisen wird anhand der Effizienzwertmethode (EWM) durchgeführt, welche an der Bauhaus ? Universität Weimar von Dr. Derek Eisert entwickelt wurde. Mit Hilfe der EWM ist es möglich ganzheitliche und nachhaltige Bewertungen durchzuführen. Im Rahmen der Anwendung der EWM war vor allem die Überprüfung des Kriterienkataloges im Hinblick auf die Anwendbarkeit bei Verbundbrücken ein Ziel dieser Arbeit. Um eine exakte Bewertung durchführen zu können ist es notwendig exakte Beiwerte für die einzelnen Kriterien (Tragen, Gebrauchen, Erleben, Ökonomie und Ökologie) zu ermitteln. Hierzu sind entsprechende Grundlagen und Recherchequellen aufgezeigt.
An einer Tensegrity-Struktur wurden experimentell-rechnerische Untersuchungen durchgeführt. Der Zoo Rostock plant den Bau einer neuen Voliere mit einer Tensegrity-Struktur. Die Form wurde von Dr. Veit Bayer, Bauhaus-Uni Weimar und Klaus Wagnener, PWP-Berlin entwickelt. Berechnungsalgorithmen nach Skelton wurden in der FE-Software SLang, Bauhaus-Uni Weimar von Dr. Veit Bayer implementiert. Mit diesen Algorithmen kann der Vorspannzustand von Tensegrity-Strukturen bestimmt werden und eine geometrisch nicht-lineare Berechnung erfolgen. Um die Berechnungen zu überprüfen, wurde ein 1:5 Modell der Voliere berechnet und erstellt. An diesem wurden Belastungsversuchen durchgeführt und Kräfte und Verformungen gemessen. Die Seilkräfte wurden mit Hilfe der ersten Eigenfrequenz gemessen, die Verformungen mit einem Tachymeter aufgezeichnet. Die Ergebnisse wurden zur Verfizierung der Berechnungsalgorithmen verwendet. Mit der Software SLang wurden Berechnungsmodelle erstellt, um das Versuchsmodell abzubilden. Die experimentellen Ergebnisse wurden mit berechneten Werten verglichen. Es konnte gezeigt werden, dass mit den implementierten Algorithmen eine Berechnung von Tensegrity-Strukturen möglich ist.