## Professur Baustatik und Bauteilfestigkeit

### Refine

#### Document Type

- Master's Thesis (8)
- Doctoral Thesis (4)
- Article (2)

#### Institute

#### Keywords

- Beton (5)
- FEM (2)
- Schwingungsdämpfung (2)
- damping aggregate (2)
- metaconcrete (2)
- vibration absorber (2)
- ASR (1)
- Alkali-silica reaction (1)
- B-Splines (1)
- Beste Approximation (1)

Experimental Validation of Dynamic Response of Small-Scale Metaconcrete Beams at Resonance Vibration
(2023)

Structures and their components experience substantially large vibration amplitudes at resonance, which can cause their failure. The scope of this study is the utilization of silicone-coated steel balls in concrete as damping aggregates to suppress the resonance vibration. The heavy steel cores oscillate with a frequency close to the resonance frequency of the structure. Due to the phase difference between the vibrations of the cores and the structure, the cores counteract the vibration of the structure. The core-coating inclusions are randomly distributed in concrete similar to standard aggregates. This mixture is referred to as metaconcrete. The main goal of this work is to validate the ability of the inclusions to suppress mechanical vibration through laboratory experiments. For this purpose, two small-scale metaconcrete beams were cast and tested. In a free vibration test, the metaconcrete beams exhibited a larger damping ratio compared to a similar beam cast from conventional concrete. The vibration amplitudes of the metaconcrete beams at resonance were measured with a frequency sweep test. In comparison with the conventional concrete beam, both metaconcrete beams demonstrated smaller vibration amplitudes. Both experiments verified an improvement in the dynamic response of the metaconcrete beams at resonance vibration.

Resonance vibration of structures is an unpleasant incident that can be conventionally avoided by using a Tuned Mass Damper (TMD). The scope of this paper contains the utilization of engineered inclusions in concrete as damping aggregates to suppress resonance vibration similar to a TMD. The inclusions are composed of a stainless-steel core with a spherical shape coated with silicone. This configuration has been the subject of several studies and it is best known as Metaconcrete. This paper presents the procedure of a free vibration test conducted with two small-scaled concrete beams. The beams exhibited a higher damping ratio after the core-coating element was secured to them. Subsequently, two meso-models of small-scaled beams were created: one representing conventional concrete and the other representing concrete with the core-coating inclusions. The frequency response curves of the models were obtained. The change in the response peak verified the ability of the inclusions to suppress the resonance vibration. This study concludes that the core-coating inclusions can be utilized in concrete as damping aggregates.

In vielen Leichtbauanwendungen ist der begrenzende Faktor die Schwingungsanfälligkeit der Bauteile. Eine Möglichkeit der Begrenzung von Schwingungsamplituden ist der gezielte Einsatz von Reibungsdämpfung in Leichtbaustrukturen. In dieser Arbeit wird der Einfluss dieser Art von Energiedissipation auf Leichtmetallstrukturen sowie topologieoptimierte Bauteil untersucht. Betrachtet werden dabei die Positionierung, Dimensionierung sowie die Reibeigenschaften dissipativer Elemente.

In the last decades, Finite Element Method has become the main method in statics and dynamics analysis in engineering practice. For current problems, this method provides a faster, more flexible solution than the analytic approach. Prognoses of complex engineer problems that used to be almost impossible to solve are now feasible.
Although the finite element method is a robust tool, it leads to new questions about engineering solutions. Among these new problems, it is possible to divide into two major groups: the first group is regarding computer performance; the second one is related to understanding the digital solution.
Simultaneously with the development of the finite element method for numerical solutions, a theory between beam theory and shell theory was developed: Generalized Beam Theory, GBT. This theory has not only a systematic and analytical clear presentation of complicated structural problems, but also a compact and elegant calculation approach that can improve computer performance.
Regrettably, GBT was not internationally known since the most publications of this theory were written in German, especially in the first years. Only in recent years, GBT has gradually become a fertile research topic, with developments from linear to non-linear analysis.
Another reason for the misuse of GBT is the isolated application of the theory. Although recently researches apply finite element method to solve the GBT's problems numerically, the coupling between finite elements of GBT and other theories (shell, solid, etc) is not the subject of previous research. Thus, the main goal of this dissertation is the coupling between GBT and shell/membrane elements. Consequently, one achieves the benefits of both sides: the versatility of shell elements with the high performance of GBT elements.
Based on the assumptions of GBT, this dissertation presents how the separation of variables leads to two calculation's domains of a beam structure: a cross-section modal analysis and the longitudinal amplification axis. Therefore, there is the possibility of applying the finite element method not only in the cross-section analysis, but also the development for an exact GBT's finite element in the longitudinal direction.
For the cross-section analysis, this dissertation presents the solution of the quadratic eigenvalue problem with an original separation between plate and membrane mechanism. Subsequently, one obtains a clearer representation of the deformation mode, as well as a reduced quadratic eigenvalue problem.
Concerning the longitudinal direction, this dissertation develops the novel exact elements, based on hyperbolic and trigonometric shape functions. Although these functions do not have trivial expressions, they provide a recursive procedure that allows periodic derivatives to systematise the development of stiffness matrices. Also, these shape functions enable a single-element discretisation of the beam structure and ensure a smooth stress field.
From these developments, this dissertation achieves the formulation of its primary objective: the connection of GBT and shell elements in a mixed model. Based on the displacement field, it is possible to define the coupling equations applied in the master-slave method. Therefore, one can model the structural connections and joints with finite shell elements and the structural beams and columns with GBT finite element.
As a side effect, the coupling equations limit the displacement field of the shell elements under the assumptions of GBT, in particular in the neighbourhood of the coupling cross-section.
Although these side effects are almost unnoticeable in linear analysis, they lead to cumulative errors in non-linear analysis. Therefore, this thesis finishes with the evaluation of the mixed GBT-shell models in non-linear analysis.

In this thesis, a generic model for the post-failure behavior of concrete in tension is proposed. A mesoscale model of concrete representing the heterogeneous nature of concrete is formulated. The mesoscale model is composed of three phases: aggregate, mortar matrix, and the Interfacial Transition Zone between them. Both local and non-local formulations of the damage are implemented and the results are compared. Three homogenization schemes from the literature are employed to obtain the homogenized constitutive relationship for the macroscale model. Three groups of numerical examples are provided.

Increasing structural robustness is the goal which is of interest for structural engineering community. The partial collapse of RC buildings is subject of this dissertation. Understanding the robustness of RC buildings will guide the development of safer structures against abnormal loading scenarios such as; explosions, earthquakes, fine, and/or long-term accumulation effects leading to deterioration or fatigue. Any of these may result in local immediate structural damage, that can propagate to the rest of the structure causing what is known by the disproportionate collapse.
This work handels collapse propagation through various analytical approaches which simplifies the mechanical description of damaged reinfoced concrete structures due to extreme acidental event.

Im Rahmen der Forschung an Bauteil- und Fügestellendämpfung wurden die Schwingungen der Bauteile bisher mit 1D-Laser-Vibrometern gemessen. Nun steht ein 3D-Laser-Scanner zur Verfügung. Diese Arbeit beschäftigt sich mit der Frage, ob mit dem 3D-Laser-Scanner bessere und weitere relevante Daten bei der Schwingungsmessung gewonnen werden können.

Alkali-silica reaction causes major problems in concrete structures due to the rapidity of its deformation which leads to the serviceability limit of the structure being reached well before its time. Factors that affect ASR vary greatly, including alkali and silica content, relative humidity, temperature and porosity of the cementitious matrix,all these making it a very complex phenomenon to consider explicitly. With this in mind, the finite element technique was used to build models and generate expansive pressures and damage propagation due to ASR under the influence of thermo-hygrochemoelastic loading. Since ASR initializes in the mesoscopic regions of the concrete,
the accumulative effects of its expansion escalates onto the macroscale level with the development of web cracking on the concrete surface, hence solution of the damage model as well as simulation of the ASR phenomenon at both the macroscale and mesoscale levels have been performed. The macroscale model realizes the effects of ASR expansion as a whole and shows how it develops under the influence of moisture, thermal and mechanical loading. Results of the macroscale modeling are
smeared throughout the structure and are sufficient to show how damage due to ASR expansion orientates. As opposed to the mesoscale model, the heterogeneity of the model shows us how difference in material properties between aggregates and the cementitious matrix facilitates ASR expansion. With both these models, the ASR phenomenon under influence of thermo-chemo-hygro-mechanical loading can be better understood.

This thesis presents two new methods in finite elements and isogeometric analysis for structural analysis. The first method proposes an alternative alpha finite element method using triangular elements. In this method, the piecewise constant strain field of linear triangular finite element method models is enhanced by additional strain terms with an adjustable parameter a, which results in an effectively softer stiffness formulation compared to a linear triangular element. In order to avoid the transverse shear locking of Reissner-Mindlin plates analysis the alpha finite element method is coupled with a discrete shear gap technique for triangular elements to significantly improve the accuracy of the standard triangular finite elements.
The basic idea behind this element formulation is to approximate displacements and rotations as in the standard finite element method, but to construct the bending, geometrical and shear strains using node-based smoothing domains. Several numerical examples are presented and show that the alpha FEM gives a good agreement compared to several other methods in the literature.
Second method, isogeometric analysis based on rational splines over hierarchical T-meshes (RHT-splines) is proposed. The RHT-splines are a generalization of Non-Uniform Rational B-splines (NURBS) over hierarchical T-meshes, which is a piecewise bicubic polynomial over a hierarchical
T-mesh. The RHT-splines basis functions not only inherit all the properties of NURBS such as non-negativity, local support and partition of unity but also more importantly as the capability of joining geometric objects without gaps, preserving higher order continuity everywhere and allow local refinement and adaptivity. In order to drive the adaptive refinement, an efficient recovery-based error estimator is employed. For this problem an imaginary surface is defined. The imaginary surface is basically constructed by RHT-splines basis functions which is used for approximation and interpolation functions as well as the construction of the recovered stress components. Numerical investigations prove that the proposed method is capable to obtain results with higher accuracy and convergence rate than NURBS results.

Untersuchungen adaptiver Modellanpassungen für Probleme dynamischer Bauwerks-Bodeninteraktion
(2009)

Die Eigenschaften des Baugrunds können das dynamische Verhalten eines Bauwerks in erheblichem Maße beeinflussen. Um daraus resultierende Veränderungen der Tragwerksbeanspruchung ermitteln zu können, muss der Boden in den Berechnungsmodellen zur Bestimmung der Tragwerksbeanspruchung berücksichtigt werden. Die möglichen Modellierungsvarianten unterscheiden sich in ihrer Komplexität erheblich. Im Rahmen dieser Arbeit wird das dynamische Verhalten eines konkreten Bauwerks, der Millikan Library, an einem numerischen Modell untersucht. Während das Partialmodell Bauwerk während der Untersuchungen unverändert bleibt, werden für den Boden verschiedene Modellierungsvarianten verwendet. Allen Bodenmodellen gemein ist, dass sie auf einfachen, gekoppelten Feder-Dämpferelementen beruhen. Die mit den unterschiedlichen Modellierungsvarianten des Bodens erzielten Ergebnisse werden einander gegenüber gestellt und mit dem, im Rahmen anderer Arbeiten experimentell bestimmten, dynamischen Verhalten des untersuchten Bauwerks verglichen.