## 50.15 Konstruktionslehre

### Refine

#### Has Fulltext

- yes (2)

#### Document Type

- Conference Proceeding (1)
- Master's Thesis (1)

#### Institute

#### Keywords

- Adaptable design (1)
- Aerodynamic (1)
- Architecture (1)
- Corrugated cardboard sandwich (1)
- Folded components (1)
- Papierware (1)
- Platte (1)
- Sandwichbauteil (1)
- Sustainable construction technology (1)
- Tragendes Teil (1)

The high resource demand of the building sector clearly indicates the need to search for alternative, renewable and energy-efficient materials. This work presents paper-laminated sandwich elements with a core of corrugated paperboard that can serve as architectural components with a load-bearing capacity after a linear folding process. Conventional methods either use paper tubes or glued layers of honeycomb panels. In contrast, the folded components are extremely lightweight, provide the material strength exactly where it is statically required and offer many possibilities for design variants. After removing stripes of the paper lamination, the sandwich can be folded in a linear way at this position. Without the resistance of the missing paper, the sandwich core can be easily compressed. The final angle of the folding correlates with the width of the removed paper stripe. As such, this angle can be described by a simple geometric equation. The geometrical basis for the production of folded sandwich elements was established and many profile types were generated such as triangular, square or rectangular shapes. The method allows the easy planning and fast production of components that can be used in the construction sector. A triangle profile was used to create a load-bearing frame as supporting structure for an experimental building. This first permanent building completely made of corrugated cardboard was evaluated in a two-year test to confirm the efficiency of the developed components. In addition to the frame shown in this paper, large-scale sandwich elements with a core of folded components can be used to fabricate lightweight ceilings and large-scale sandwich components. The method enables the efficient production of linearly folded cardboard elements which can replace normal wooden components like beams, pillars or frames and bring a fully recycled material in the context of architectural construction.

Aerodynamic Analysis of Slender Vertical Structure and Response Control with Tuned Mass Damper
(2015)

Analysis of vortex induced vibration has gained more interest in practical held of civil engineering. The phenomenon often occurs in long and slender vertical structure like high rise building, tower, chimney or bridge pylon, which resulting in unfavorable responses and might lead to the collapse of the structures. The phenomenon appears when frequency of vortex shedding produced in the wake area of body meet the natural frequency of the structure. Even though this phenomenon does not necessarily generate a divergent amplitude response, the structure still may fail due to fatigue damage.
To reduce the effect of vortex induced vibration, engineers widely use passive vibration response control system. In this case, the thesis studies the effect of tuned mass damper. The objective of this thesis is to simulate the effect of tuned mass damper in reducing unfavorable responses due to vortex induced vibration and initiated by numerical model validation with respect to wind tunnel test report. The reference structure that being used inside the thesis is Stonecutter Bridge, Hongkong.
A numerical solver for computational uid dynamics named VX ow which developed by Morgenthal [6] is utilized for wind and structure simulation. The comparison between numerical model and wind tunnel result shows 10% maximum tip displacement diference in the model of full erection freestanding tower. The tuned mass damper (TMD) model itself built separately in finite element software SOFiSTiK, and the efective damping obtained from this model then applied inside input modal data of VX ow simulation. A single TMD with mass ratio of TMD 0.5% to the mass of first bending frequency, the maximum tip displacement is measured to be average 67% reduced.
Considering construction limitation and robustness of TMD, the effects of multiple TMD inside a structure are also studied. An uncoupled procedure of applying aeroelastic loads obtained from VX
ow inside finite element software SOFiSTiK is also done to observe the optimum distribution and optimum mass ratio of multiple tuned mass damper. The rest of the properties of TMD are calculated with Den Hartog's formula. The results are as follows: peak displacement in the case of multiple TMD that distributed with polynomial spacing achieve 7.8% more reduction performance than
the one that distributed with equal spacing. Optimum mass of tuned mass damper achieved with ratio 1.25% mass of first bending frequency corresponds to across wind direction.