## 006 Spezielle Computerverfahren

### Refine

#### Institute

#### Keywords

- Informatik (1)
- Information Visualization (1)
- Isogeometric Analysis (1)
- Mesh quality (1)
- NURBS (1)
- Plagiarism Visualization (1)
- Preferential Choice (1)
- Procedural modeling (1)
- Product Search (1)
- Templates (1)

This thesis presents new interactive visualization techniques and systems intended to support users with real-world decisions such as selecting a product from a large variety of similar offerings, finding appropriate wording as a non-native speaker, and assessing an alleged case of plagiarism.
The Product Explorer is a significantly improved interactive Parallel Coordinates display for facilitating the product selection process in cases where many attributes and numerous alternatives have to be considered. A novel visual representation for categorical and ordered data with only few occurring values, the so-called extended areas, in combination with cubic curves for connecting the parallel axes, are crucial for providing an effective overview of the entire dataset and to facilitate the tracing of individual products. The visual query interface supports users in quickly narrowing down the product search to a small subset or even a single product. The scalability of the approach towards a large number of attributes and products is enhanced by the possibility of setting some constraints on final attributes and, therefore, reducing the number of considered attributes and data items. Furthermore, an attribute repository allows users to focus on the most important attributes at first and to bring in additional criteria for product selection later in the decision process. A user study confirmed that the Product Explorer is indeed an excellent tool for its intended purpose for casual users.
The Wordgraph is a layered graph visualization for the interactive exploration of search results for complex keywords-in-context queries. The system relies on the Netspeak web service and is designed to support non-native speakers in finding customary phrases. Uncertainties about the commonness of phrases are expressed with the help of wildcard-based queries. The visualization presents the alternatives for the wildcards in a multi-column layout: one column per wildcard with the other query fragments in between. The Wordgraph visualization displays the sorted results for all wildcards at once by appropriately arranging the words of each column. A user study confirmed that this is a significant advantage over simple textual result lists. Furthermore, visual interfaces to filter, navigate, and expand the graph allow interactive refinement and expansion of wildcard-containing queries.
Furthermore, this thesis presents an advanced visual analysis tool for assessing and presenting alleged cases of plagiarism and provides a three-level approach for exploring the so-called finding spots in their context. The overview shows the relationship of the entire suspicious document to the set of source documents. An intermediate glyph-based view reveals the structural and textual differences and similarities of a set of finding spots and their corresponding source text fragments. Eventually, the actual fragments of the finding spot can be shown in a side-by-side view with a novel structured wrapping of both the source, as well as the suspicious text. The three different levels of detail are tied together by versatile navigation and selection operations. Reviews with plagiarism experts confirm that this tool can effectively support their workflow and provides a significant improvement over existing static visualizations for assessing and presenting plagiarism cases.
The three main contributions of this research have a lot in common aside from being carefully designed and scientifically grounded solutions to real-world decision problems. The first two visualizations facilitate the decision for a single possibility out of many alternatives, whereas the latter ones deal with text at varying levels of detail. All visual representations are clearly structured based on horizontal and vertical layers contained in a single view and they all employ edges for depicting the most important relationships between attributes, words, or different levels of detail. A detailed analysis considering the context of the established decision-making literature reveals that important steps of common decision models are well-supported by the three visualization systems presented in this thesis.

Increasingly powerful hard- and software allows for the numerical simulation of complex physical phenomena with high levels of detail. In light of this development the definition of numerical models for the Finite Element Method (FEM) has become the bottleneck in the simulation process. Characteristic features of the model generation are large manual efforts and a de-coupling of geometric and numerical model. In the highly probable case of design revisions all steps of model preprocessing and mesh generation have to be repeated. This includes the idealization and approximation of a geometric model as well as the definition of boundary conditions and model parameters. Design variants leading to more resource-efficient structures might hence be disregarded due to limited budgets and constrained time frames.
A potential solution to above problem is given with the concept of Isogeometric Analysis (IGA). Core idea of this method is to directly employ a geometric model for numerical simulations, which allows to circumvent model transformations and the accompanying data losses. Basis for this method are geometric models described in terms of Non-uniform rational B-Splines (NURBS). This class of piecewise continuous rational polynomial functions is ubiquitous in computer graphics and Computer-Aided Design (CAD). It allows the description of a wide range of geometries using a compact mathematical representation. The shape of an object thereby results from the interpolation of a set of control points by means of the NURBS functions, allowing efficient representations for curves, surfaces and solid bodies alike. Existing software applications, however, only support the modeling and manipulation of the former two. The description of three-dimensional solid bodies consequently requires significant manual effort, thus essentially forbidding the setup of complex models.
This thesis proposes a procedural approach for the generation of volumetric NURBS models. That is, a model is not described in terms of its data structures but as a sequence of modeling operations applied to a simple initial shape. In a sense this describes the "evolution" of the geometric model under the sequence of operations. In order to adapt this concept to NURBS geometries, only a compact set of commands is necessary which, in turn, can be adapted from existing algorithms. A model then can be treated in terms of interpretable model parameters. This leads to an abstraction from its data structures and model variants can be set up by variation of the governing parameters.
The proposed concept complements existing template modeling approaches: templates can not only be defined in terms of modeling commands but can also serve as input geometry for said operations. Such templates, arranged in a nested hierarchy, provide an elegant model representation. They offer adaptivity on each tier of the model hierarchy and allow to create complex models from only few model parameters. This is demonstrated for volumetric fluid domains used in the simulation of vertical-axis wind turbines. Starting from a template representation of airfoil cross-sections, the complete "negative space" around the rotor blades can be described by a small set of model parameters, and model variants can be set up in a fraction of a second.
NURBS models offer a high geometric flexibility, allowing to represent a given shape in different ways. Different model instances can exhibit varying suitability for numerical analyses. For their assessment, Finite Element mesh quality metrics are regarded. The considered metrics are based on purely geometric criteria and allow to identify model degenerations commonly used to achieve certain geometric features. They can be used to decide upon model adaptions and provide a measure for their efficacy. Unfortunately, they do not reveal a relation between mesh distortion and ill-conditioning of the equation systems resulting from the numerical model.