### Refine

#### Institute

#### Keywords

- Finite-Elemente-Methode (2)
- Isogeometric Analysis (2)
- NURBS (2)
- Adaptive central high resolution schemes (1)
- Adaptives System (1)
- Bruch (1)
- FEM (1)
- Fracture (1)
- Fracture Computational Model (1)
- Geometric Modeling (1)

This thesis presents two new methods in finite elements and isogeometric analysis for structural analysis. The first method proposes an alternative alpha finite element method using triangular elements. In this method, the piecewise constant strain field of linear triangular finite element method models is enhanced by additional strain terms with an adjustable parameter a, which results in an effectively softer stiffness formulation compared to a linear triangular element. In order to avoid the transverse shear locking of Reissner-Mindlin plates analysis the alpha finite element method is coupled with a discrete shear gap technique for triangular elements to significantly improve the accuracy of the standard triangular finite elements.
The basic idea behind this element formulation is to approximate displacements and rotations as in the standard finite element method, but to construct the bending, geometrical and shear strains using node-based smoothing domains. Several numerical examples are presented and show that the alpha FEM gives a good agreement compared to several other methods in the literature.
Second method, isogeometric analysis based on rational splines over hierarchical T-meshes (RHT-splines) is proposed. The RHT-splines are a generalization of Non-Uniform Rational B-splines (NURBS) over hierarchical T-meshes, which is a piecewise bicubic polynomial over a hierarchical
T-mesh. The RHT-splines basis functions not only inherit all the properties of NURBS such as non-negativity, local support and partition of unity but also more importantly as the capability of joining geometric objects without gaps, preserving higher order continuity everywhere and allow local refinement and adaptivity. In order to drive the adaptive refinement, an efficient recovery-based error estimator is employed. For this problem an imaginary surface is defined. The imaginary surface is basically constructed by RHT-splines basis functions which is used for approximation and interpolation functions as well as the construction of the recovered stress components. Numerical investigations prove that the proposed method is capable to obtain results with higher accuracy and convergence rate than NURBS results.

Piezoelectric materials are used in several applications as sensors and actuators where they experience high stress and electric field concentrations as a result of which they may fail due to fracture. Though there are many analytical and experimental works on piezoelectric fracture mechanics. There are very few studies about damage detection, which is an interesting way to prevent the failure of these ceramics.
An iterative method to treat the inverse problem of detecting cracks and voids in piezoelectric structures is proposed. Extended finite element method (XFEM) is employed for solving the inverse problem as it allows the use of a single regular mesh for large number of iterations with different flaw geometries.
Firstly, minimization of cost function is performed by Multilevel Coordinate Search (MCS) method. The XFEM-MCS methodology is applied to two dimensional electromechanical problems where flaws considered are straight cracks and elliptical voids. Then a numerical method based on combination of classical shape derivative and level set method for front propagation used in structural optimization is utilized to minimize the cost function. The results obtained show that the XFEM-level set methodology is effectively able to determine the number of voids in a piezoelectric structure and its corresponding locations.
The XFEM-level set methodology is improved to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure. The material interfaces are implicitly represented by level sets which are identified by applying regularisation using total variation penalty terms. The formulation is presented for three dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material subdomains in the presence of higher noise levels.
Piezoelectric nanostructures exhibit size dependent properties because of surface elasticity and surface piezoelectricity. Initially a study to understand the influence of surface elasticity on optimization of nano elastic beams is performed. The boundary of the nano structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target
displacement, are chosen for the numerical examples. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams.
Finally a conventional cantilever energy harvester with a piezoelectric nano layer is analysed. The presence of surface piezoelectricity in nano beams and nano plates leads to increase in electromechanical coupling coefficient. Topology optimization of these piezoelectric structures in an energy harvesting device to further increase energy conversion using appropriately modified XFEM-level set algorithm is performed .

This thesis addresses an adaptive higher-order method based on a Geometry Independent Field approximatTion(GIFT) of polynomial/rationals plines over hierarchical T-meshes(PHT/RHT-splines).
In isogeometric analysis, basis functions used for constructing geometric models in computer-aided design(CAD) are also employed to discretize the partial differential equations(PDEs) for numerical analysis. Non-uniform rational B-Splines(NURBS) are the most commonly used basis functions in CAD. However, they may not be ideal for numerical analysis where local refinement is required.
The alternative method GIFT deploys different splines for geometry and numerical analysis. NURBS are utilized for the geometry representation, while for the field solution, PHT/RHT-splines are used. PHT-splines not only inherit the useful properties of B-splines and NURBS, but also possess the capabilities of local refinement and hierarchical structure. The smooth basis function properties of PHT-splines make them suitable for analysis purposes. While most problems considered in isogeometric analysis can be solved efficiently when the solution is smooth, many non-trivial problems have rough solutions. For example, this can be caused by the presence of re-entrant corners in the domain. For such problems, a tensor-product basis (as in the case of NURBS) is less suitable for resolving the singularities that appear since refinement propagates throughout the computational domain. Hierarchical bases and local refinement (as in the case of PHT-splines) allow for a more efficient way to resolve these singularities by adding more degrees of freedom where they are necessary. In order to drive the adaptive refinement, an efficient recovery-based error estimator is proposed in this thesis. The estimator produces a recovery solution which is a more accurate approximation than the computed numerical solution. Several two- and three-dimensional numerical investigations with PHT-splines of higher order and continuity prove that the proposed method is capable of obtaining results with higher accuracy, better convergence, fewer degrees of freedom and less computational cost than NURBS for smooth solution problems. The adaptive GIFT method utilizing PHT-splines with the recovery-based error estimator is used for solutions with discontinuities or singularities where adaptive local refinement in particular domains of interest achieves higher accuracy with fewer degrees of freedom. This method also proves that it can handle complicated multi-patch domains for two- and three-dimensional problems outperforming uniform refinement in terms of degrees of freedom and computational cost.

Encapsulation-based self-healing concrete has received a lot of attention nowadays in civil engineering field. These capsules are embedded in the cementitious matrix during concrete mixing. When the cracks appear, the embedded capsules which are placed along the path of incoming crack are fractured and then release of healing agents in the vicinity of damage. The materials of capsules need to be designed in a way that they should be able to break with small deformation, so the internal fluid can be released to seal the crack. This study focuses on computational modeling of fracture in encapsulation-based selfhealing concrete. The numerical model of 2D and 3D with randomly packed aggreates and capsules have been developed to analyze fracture mechanism that plays a significant role in the fracture probability of capsules and consequently the self-healing process. The capsules are assumed to be made of Poly Methyl Methacrylate (PMMA) and the potential cracks are represented by pre-inserted cohesive elements with tension and shear softening laws along the element boundaries of the mortar matrix, aggregates, capsules, and at the interfaces between these phases. The effects of volume fraction, core-wall thickness ratio, and mismatch fracture properties of capsules on the load carrying capacity of self-healing concrete and fracture probability of the capsules are investigated. The output of this study will become valuable tool to assist not only the experimentalists but also the manufacturers in designing an appropriate capsule material for self-healing concrete.

The aim of this study is controlling of spurious oscillations developing around discontinuous solutions of both linear and non-linear wave equations or hyperbolic partial differential equations (PDEs). The equations include both first-order and second-order (wave) hyperbolic systems. In these systems even smooth initial conditions, or smoothly varying source (load) terms could lead to discontinuous propagating solutions (fronts). For the first order hyperbolic PDEs, the concept of central high resolution schemes is integrated with the multiresolution-based adaptation to capture properly both discontinuous propagating fronts and effects of fine-scale responses on those of larger scales in the multiscale manner. This integration leads to using central high resolution schemes on non-uniform grids; however, such simulation is unstable, as the central schemes are originally developed to work properly on uniform cells/grids. Hence, the main concern is stable collaboration of central schemes and multiresoltion-based cell adapters. Regarding central schemes, the considered approaches are: 1) Second order central and central-upwind schemes; 2) Third order central schemes; 3) Third and fourth order central weighted non-oscillatory schemes (central-WENO or CWENO); 4) Piece-wise parabolic methods (PPMs) obtained with two different local stencils. For these methods, corresponding (nonlinear) stability conditions are studied and modified, as well. Based on these stability conditions several limiters are modified/developed as follows: 1) Several second-order limiters with total variation diminishing (TVD) feature, 2) Second-order uniformly high order accurate non-oscillatory (UNO) limiters, 3) Two third-order nonlinear scaling limiters, 4) Two new limiters for PPMs. Numerical results show that adaptive solvers lead to cost-effective computations (e.g., in some 1-D problems, number of adapted grid points are less than 200 points during simulations, while in the uniform-grid case, to have the same accuracy, using of 2049 points is essential). Also, in some cases, it is confirmed that fine scale responses have considerable effects on higher scales.
In numerical simulation of nonlinear first order hyperbolic systems, the two main concerns are: convergence and uniqueness. The former is important due to developing of the spurious oscillations, the numerical dispersion and the numerical dissipation. Convergence in a numerical solution does not guarantee that it is the physical/real one (the uniqueness feature). Indeed, a nonlinear systems can converge to several numerical results (which mathematically all of them are true). In this work, the convergence and uniqueness are directly studied on non-uniform grids/cells by the concepts of local numerical truncation error and numerical entropy production, respectively. Also, both of these concepts have been used for cell/grid adaptations. So, the performance of these concepts is also compared by the multiresolution-based method. Several 1-D and 2-D numerical examples are examined to confirm the efficiency of the adaptive solver. Examples involve problems with convex and non-convex fluxes. In the latter case, due to developing of complex waves, proper capturing of real answers needs more attention. For this purpose, using of method-adaptation seems to be essential (in parallel to the cell/grid adaptation). This new type of adaptation is also performed in the framework of the multiresolution analysis.
Regarding second order hyperbolic PDEs (mechanical waves), the regularization concept is used to cure artificial (numerical) oscillation effects, especially for high-gradient or discontinuous solutions. There, oscillations are removed by the regularization concept acting as a post-processor. Simulations will be performed directly on the second-order form of wave equations. It should be mentioned that it is possible to rewrite second order wave equations as a system of first-order waves, and then simulated the new system by high resolution schemes. However, this approach ends to increasing of variable numbers (especially for 3D problems).
The numerical discretization is performed by the compact finite difference (FD) formulation with desire feature; e.g., methods with spectral-like or optimized-error properties. These FD methods are developed to handle high frequency waves (such as waves near earthquake sources). The performance of several regularization approaches is studied (both theoretically and numerically); at last, a proper regularization approach controlling the Gibbs phenomenon is recommended.
At the end, some numerical results are provided to confirm efficiency of numerical solvers enhanced by the regularization concept. In this part, shock-like responses due to local and abrupt changing of physical properties, and also stress wave propagation in stochastic-like domains are studied.

This thesis presents the advances and applications of phase field modeling in fracture analysis. In this approach, the sharp crack surface topology in a solid is approximated by a diffusive crack zone governed by a scalar auxiliary variable. The uniqueness of phase field modeling is that the crack paths are automatically determined as part of the solution and no interface tracking is required. The damage parameter varies continuously over the domain. But this flexibility comes with associated difficulties: (1) a very fine spatial discretization is required to represent sharp local gradients correctly; (2) fine discretization results in high computational cost; (3) computation of higher-order derivatives for improved convergence rates and (4) curse of dimensionality in conventional numerical integration techniques. As a consequence, the practical applicability of phase field models is severely limited.
The research presented in this thesis addresses the difficulties of the conventional numerical integration techniques for phase field modeling in quasi-static brittle fracture analysis. The first method relies on polynomial splines over hierarchical T-meshes (PHT-splines) in the framework of isogeometric analysis (IGA). An adaptive h-refinement scheme is developed based on the variational energy formulation of phase field modeling. The fourth-order phase field model provides increased regularity in the exact solution of the phase field equation and improved convergence rates for numerical solutions on a coarser discretization, compared to the second-order model. However, second-order derivatives of the phase field are required in the fourth-order model. Hence, at least a minimum of C1 continuous basis functions are essential, which is achieved using hierarchical cubic B-splines in IGA. PHT-splines enable the refinement to remain local at singularities and high gradients, consequently reducing the computational cost greatly. Unfortunately, when modeling complex geometries, multiple parameter spaces (patches) are joined together to describe the physical domain and there is typically a loss of continuity at the patch boundaries. This decrease of smoothness is dictated by the geometry description, where C0 parameterizations are normally used to deal with kinks and corners in the domain. Hence, the application of the fourth-order model is severely restricted. To overcome the high computational cost for the second-order model, we develop a dual-mesh adaptive h-refinement approach. This approach uses a coarser discretization for the elastic field and a finer discretization for the phase field. Independent refinement strategies have been used for each field.
The next contribution is based on physics informed deep neural networks. The network is trained based on the minimization of the variational energy of the system described by general non-linear partial differential equations while respecting any given law of physics, hence the name physics informed neural network (PINN). The developed approach needs only a set of points to define the geometry, contrary to the conventional mesh-based discretization techniques. The concept of `transfer learning' is integrated with the developed PINN approach to improve the computational efficiency of the network at each displacement step. This approach allows a numerically stable crack growth even with larger displacement steps. An adaptive h-refinement scheme based on the generation of more quadrature points in the damage zone is developed in this framework. For all the developed methods, displacement-controlled loading is considered. The accuracy and the efficiency of both methods are studied numerically showing that the developed methods are powerful and computationally efficient tools for accurately predicting fractures.

The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part.
First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of “isoparametric”, for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images.
Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids.
Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1
continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems.