### Refine

#### Institute

- Institut für Strukturmechanik (7) (remove)

#### Keywords

- Finite-Elemente-Methode (2)
- Modellierung (2)
- finite element method (2)
- Adaptive central high resolution schemes (1)
- Adaptives System (1)
- Batterie (1)
- Battery development (1)
- Bayes (1)
- Bayesian method (1)
- Bruch (1)

Polymeric nanocomposites (PNCs) are considered for numerous nanotechnology such as: nano-biotechnology, nano-systems, nanoelectronics, and nano-structured materials. Commonly , they are formed by polymer (epoxy) matrix reinforced with a nanosized filler. The addition of rigid nanofillers to the epoxy matrix has offered great improvements in the fracture toughness without sacrificing other important thermo-mechanical properties. The physics of the fracture in PNCs is rather complicated and is influenced by different parameters. The presence of uncertainty in the predicted output is expected as a result of stochastic variance in the factors affecting the fracture mechanism. Consequently, evaluating the improved fracture toughness in PNCs is a challenging problem.
Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have been employed to predict the fracture energy of polymer/particle nanocomposites. The ANN and ANFIS models were constructed, trained, and tested based on a collection of 115 experimental datasets gathered from the literature. The performance evaluation indices of the developed ANN and ANFIS showed relatively small error, with high coefficients of determination (R2), and low root mean square error and mean absolute percentage error.
In the framework for uncertainty quantification of PNCs, a sensitivity analysis (SA) has been conducted to examine the influence of uncertain input parameters on the fracture toughness of polymer/clay nanocomposites (PNCs). The phase-field approach is employed to predict the macroscopic properties of the composite considering six uncertain input parameters. The efficiency, robustness, and repeatability are compared and evaluated comprehensively for five different SA methods.
The Bayesian method is applied to develop a methodology in order to evaluate the performance of different analytical models used in predicting the fracture toughness of polymeric particles nanocomposites. The developed method have considered the model and parameters uncertainties based on different reference data (experimental measurements) gained from the literature. Three analytical models differing in theory and assumptions were examined. The coefficients of variation of the model predictions to the measurements are calculated using the approximated optimal parameter sets. Then, the model selection probability is obtained with respect to the different reference data.
Stochastic finite element modeling is implemented to predict the fracture toughness of polymer/particle nanocomposites. For this purpose, 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone is generated. The crack propagation is simulated by the cohesive segments method and phantom nodes. Considering the uncertainties in the input parameters, a polynomial chaos expansion (PCE) surrogate model is construed followed by a sensitivity analysis.

Material properties play a critical role in durable products manufacturing. Estimation of the precise characteristics in different scales requires complex and expensive experimental measurements. Potentially, computational methods can provide a platform to determine the fundamental properties before the final experiment. Multi-scale computational modeling leads to the modeling of the various time, and length scales include nano, micro, meso, and macro scales. These scales can be modeled separately or in correlation with coarser scales. Depend on the interested scales modeling, the right selection of multi-scale methods leads to reliable results and affordable computational cost. The present dissertation deals with the problems in various length and time scales using computational methods include density functional theory (DFT), molecular mechanics (MM), molecular dynamics (MD), and finite element (FE) methods.
Physical and chemical interactions in lower scales determine the coarser scale properties. Particles interaction modeling and exploring fundamental properties are significant challenges of computational science. Downscale modelings need more computational effort due to a large number of interacted atoms/particles. To deal with this problem and bring up a fine-scale (nano) as a coarse-scale (macro) problem, we extended an atomic-continuum framework. The discrete atomic models solve as a continuum problem using the computationally efficient FE method. MM or force field method based on a set of assumptions approximates a solution on the atomic scale. In this method, atoms and bonds model as a harmonic oscillator with a system of mass and springs. The negative gradient of the potential energy equal to the forces on each atom. In this way, each bond's total potential energy includes bonded, and non-bonded energies are simulated as equivalent structural strain energies. Finally, the chemical nature of the atomic bond is modeled as a piezoelectric beam element that solves by the FE method.
Exploring novel materials with unique properties is a demand for various industrial applications. During the last decade, many two-dimensional (2D) materials have been synthesized and shown outstanding properties. Investigation of the probable defects during the formation/fabrication process and studying their strength under severe service life are the critical tasks to explore performance prospects. We studied various defects include nano crack, notch, and point vacancy (Stone-Wales defect) defects employing MD analysis. Classical MD has been used to simulate a considerable amount of molecules at micro-, and meso- scales. Pristine and defective nanosheet structures considered under the uniaxial tensile loading at various temperatures using open-source LAMMPS codes. The results were visualized with the open-source software of OVITO and VMD.
Quantum based first principle calculations have been conducting at electronic scales and known as the most accurate Ab initio methods. However, they are computationally expensive to apply for large systems. We used density functional theory (DFT) to estimate the mechanical and electrochemical response of the 2D materials. Many-body Schrödinger's equation describes the motion and interactions of the solid-state particles. Solid describes as a system of positive nuclei and negative electrons, all electromagnetically interacting with each other, where the wave function theory describes the quantum state of the set of particles. However, dealing with the 3N coordinates of the electrons, nuclei, and N coordinates of the electrons spin components makes the governing equation unsolvable for just a few interacted atoms. Some assumptions and theories like Born Oppenheimer and Hartree-Fock mean-field and Hohenberg-Kohn theories are needed to treat with this equation. First, Born Oppenheimer approximation reduces it to the only electronic coordinates. Then Kohn and Sham, based on Hartree-Fock and Hohenberg-Kohn theories, assumed an equivalent fictitious non-interacting electrons system as an electron density functional such that their ground state energies are equal to a set of interacting electrons. Exchange-correlation energy functionals are responsible for satisfying the equivalency between both systems. The exact form of the exchange-correlation functional is not known. However, there are widely used methods to derive functionals like local density approximation (LDA), Generalized gradient approximation (GGA), and hybrid functionals (e.g., B3LYP). In our study, DFT performed using VASP codes within the GGA/PBE approximation, and visualization/post-processing of the results realized via open-source software of VESTA.
The extensive DFT calculations are conducted 2D nanomaterials prospects as anode/cathode electrode materials for batteries. Metal-ion batteries' performance strongly depends on the design of novel electrode material. Two-dimensional (2D) materials have developed a remarkable interest in using as an electrode in battery cells due to their excellent properties. Desirable battery energy storage systems (BESS) must satisfy the high energy density, safe operation, and efficient production costs. Batteries have been using in electronic devices and provide a solution to the environmental issues and store the discontinuous energies generated from renewable wind or solar power plants. Therefore, exploring optimal electrode materials can improve storage capacity and charging/discharging rates, leading to the design of advanced batteries.
Our results in multiple scales highlight not only the proposed and employed methods' efficiencies but also promising prospect of recently synthesized nanomaterials and their applications as an anode material. In this way, first, a novel approach developed for the modeling of the 1D nanotube as a continuum piezoelectric beam element. The results converged and matched closely with those from experiments and other more complex models. Then mechanical properties of nanosheets estimated and the failure mechanisms results provide a useful guide for further use in prospect applications. Our results indicated a comprehensive and useful vision concerning the mechanical properties of nanosheets with/without defects. Finally, mechanical and electrochemical properties of the several 2D nanomaterials are explored for the first time—their application performance as an anode material illustrates high potentials in manufacturing super-stretchable and ultrahigh-capacity battery energy storage systems (BESS). Our results exhibited better performance in comparison to the available commercial anode materials.

Methods based on B-splines for model representation, numerical analysis and image registration
(2015)

The thesis consists of inter-connected parts for modeling and analysis using newly developed isogeometric methods. The main parts are reproducing kernel triangular B-splines, extended isogeometric analysis for solving weakly discontinuous problems, collocation methods using superconvergent points, and B-spline basis in image registration applications.
Each topic is oriented towards application of isogeometric analysis basis functions to ease the process of integrating the modeling and analysis phases of simulation.
First, we develop reproducing a kernel triangular B-spline-based FEM for solving PDEs. We review the triangular B-splines and their properties. By definition, the triangular basis function is very flexible in modeling complicated domains. However, instability results when it is applied for analysis. We modify the triangular B-spline by a reproducing kernel technique, calculating a correction term for the triangular kernel function from the chosen surrounding basis. The improved triangular basis is capable to obtain the results with higher accuracy and almost optimal convergence rates.
Second, we propose an extended isogeometric analysis for dealing with weakly discontinuous problems such as material interfaces. The original IGA is combined with XFEM-like enrichments which are continuous functions themselves but with discontinuous derivatives. Consequently, the resulting solution space can approximate solutions with weak discontinuities. The method is also applied to curved material interfaces, where the inverse mapping and the curved triangular elements are considered.
Third, we develop an IGA collocation method using superconvergent points. The collocation methods are efficient because no numerical integration is needed. In particular when higher polynomial basis applied, the method has a lower computational cost than Galerkin methods. However, the positions of the collocation points are crucial for the accuracy of the method, as they affect the convergent rate significantly. The proposed IGA collocation method uses superconvergent points instead of the traditional Greville abscissae points. The numerical results show the proposed method can have better accuracy and optimal convergence rates, while the traditional IGA collocation has optimal convergence only for even polynomial degrees.
Lastly, we propose a novel dynamic multilevel technique for handling image registration. It is application of the B-spline functions in image processing. The procedure considered aims to align a target image from a reference image by a spatial transformation. The method starts with an energy function which is the same as a FEM-based image registration. However, we simplify the solving procedure, working on the energy function directly. We dynamically solve for control points which are coefficients of B-spline basis functions. The new approach is more simple and fast. Moreover, it is also enhanced by a multilevel technique in order to prevent instabilities. The numerical testing consists of two artificial images, four real bio-medical MRI brain and CT heart images, and they show our registration method is accurate, fast and efficient, especially for large deformation problems.

Modern digital material approaches for the visualization and simulation of heterogeneous materials allow to investigate the behavior of complex multiphase materials with their physical nonlinear material response at various scales. However, these computational techniques require extensive hardware resources with respect to computing power and main memory to solve numerically large-scale discretized models in 3D. Due to a very high number of degrees of freedom, which may rapidly be increased to the two-digit million range, the limited hardware ressources are to be utilized in a most efficient way to enable an execution of the numerical algorithms in minimal computation time. Hence, in the field of computational mechanics, various methods and algorithms can lead to an optimized runtime behavior of nonlinear simulation models, where several approaches are proposed and investigated in this thesis.
Today, the numerical simulation of damage effects in heterogeneous materials is performed by the adaption of multiscale methods. A consistent modeling in the three-dimensional space with an appropriate discretization resolution on each scale (based on a hierarchical or concurrent multiscale model), however, still contains computational challenges in respect to the convergence behavior, the scale transition or the solver performance of the weak coupled problems. The computational efficiency and the distribution among available hardware resources (often based on a parallel hardware architecture) can significantly be improved. In the past years, high-performance computing (HPC) and graphics processing unit (GPU) based computation techniques were established for the investigationof scientific objectives. Their application results in the modification of existing and the development of new computational methods for the numerical implementation, which enables to take advantage of massively clustered computer hardware resources. In the field of numerical simulation in material science, e.g. within the investigation of damage effects in multiphase composites, the suitability of such models is often restricted by the number of degrees of freedom (d.o.f.s) in the three-dimensional spatial discretization. This proves to be difficult for the type of implementation method used for the nonlinear simulation procedure and, simultaneously has a great influence on memory demand and computational time.
In this thesis, a hybrid discretization technique has been developed for the three-dimensional discretization of a three-phase material, which is respecting the numerical efficiency of nonlinear (damage) simulations of these materials. The increase of the computational efficiency is enabled by the improved scalability of the numerical algorithms. Consequently, substructuring methods for partitioning the hybrid mesh were implemented, tested and adapted to the HPC computing framework using several hundred CPU (central processing units) nodes for building the finite element assembly. A memory-efficient iterative and parallelized equation solver combined with a special preconditioning technique for solving the underlying equation system was modified and adapted to enable combined CPU and GPU based computations.
Hence, it is recommended by the author to apply the substructuring method for hybrid meshes, which respects different material phases and their mechanical behavior and which enables to split the structure in elastic and inelastic parts. However, the consideration of the nonlinear material behavior, specified for the corresponding phase, is limited to the inelastic domains only, and by that causes a decreased computing time for the nonlinear procedure. Due to the high numerical effort for such simulations, an alternative approach for the nonlinear finite element analysis, based on the sequential linear analysis, was implemented in respect to scalable HPC. The incremental-iterative procedure in finite element analysis (FEA) during the nonlinear step was then replaced by a sequence of linear FE analysis when damage in critical regions occured, known in literature as saw-tooth approach. As a result, qualitative (smeared) crack initiation in 3D multiphase specimens has efficiently been simulated.

Matrix-free voxel-based finite element method for materials with heterogeneous microstructures
(2019)

Modern image detection techniques such as micro computer tomography
(μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis.
However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm.
This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained.

The aim of this study is controlling of spurious oscillations developing around discontinuous solutions of both linear and non-linear wave equations or hyperbolic partial differential equations (PDEs). The equations include both first-order and second-order (wave) hyperbolic systems. In these systems even smooth initial conditions, or smoothly varying source (load) terms could lead to discontinuous propagating solutions (fronts). For the first order hyperbolic PDEs, the concept of central high resolution schemes is integrated with the multiresolution-based adaptation to capture properly both discontinuous propagating fronts and effects of fine-scale responses on those of larger scales in the multiscale manner. This integration leads to using central high resolution schemes on non-uniform grids; however, such simulation is unstable, as the central schemes are originally developed to work properly on uniform cells/grids. Hence, the main concern is stable collaboration of central schemes and multiresoltion-based cell adapters. Regarding central schemes, the considered approaches are: 1) Second order central and central-upwind schemes; 2) Third order central schemes; 3) Third and fourth order central weighted non-oscillatory schemes (central-WENO or CWENO); 4) Piece-wise parabolic methods (PPMs) obtained with two different local stencils. For these methods, corresponding (nonlinear) stability conditions are studied and modified, as well. Based on these stability conditions several limiters are modified/developed as follows: 1) Several second-order limiters with total variation diminishing (TVD) feature, 2) Second-order uniformly high order accurate non-oscillatory (UNO) limiters, 3) Two third-order nonlinear scaling limiters, 4) Two new limiters for PPMs. Numerical results show that adaptive solvers lead to cost-effective computations (e.g., in some 1-D problems, number of adapted grid points are less than 200 points during simulations, while in the uniform-grid case, to have the same accuracy, using of 2049 points is essential). Also, in some cases, it is confirmed that fine scale responses have considerable effects on higher scales.
In numerical simulation of nonlinear first order hyperbolic systems, the two main concerns are: convergence and uniqueness. The former is important due to developing of the spurious oscillations, the numerical dispersion and the numerical dissipation. Convergence in a numerical solution does not guarantee that it is the physical/real one (the uniqueness feature). Indeed, a nonlinear systems can converge to several numerical results (which mathematically all of them are true). In this work, the convergence and uniqueness are directly studied on non-uniform grids/cells by the concepts of local numerical truncation error and numerical entropy production, respectively. Also, both of these concepts have been used for cell/grid adaptations. So, the performance of these concepts is also compared by the multiresolution-based method. Several 1-D and 2-D numerical examples are examined to confirm the efficiency of the adaptive solver. Examples involve problems with convex and non-convex fluxes. In the latter case, due to developing of complex waves, proper capturing of real answers needs more attention. For this purpose, using of method-adaptation seems to be essential (in parallel to the cell/grid adaptation). This new type of adaptation is also performed in the framework of the multiresolution analysis.
Regarding second order hyperbolic PDEs (mechanical waves), the regularization concept is used to cure artificial (numerical) oscillation effects, especially for high-gradient or discontinuous solutions. There, oscillations are removed by the regularization concept acting as a post-processor. Simulations will be performed directly on the second-order form of wave equations. It should be mentioned that it is possible to rewrite second order wave equations as a system of first-order waves, and then simulated the new system by high resolution schemes. However, this approach ends to increasing of variable numbers (especially for 3D problems).
The numerical discretization is performed by the compact finite difference (FD) formulation with desire feature; e.g., methods with spectral-like or optimized-error properties. These FD methods are developed to handle high frequency waves (such as waves near earthquake sources). The performance of several regularization approaches is studied (both theoretically and numerically); at last, a proper regularization approach controlling the Gibbs phenomenon is recommended.
At the end, some numerical results are provided to confirm efficiency of numerical solvers enhanced by the regularization concept. In this part, shock-like responses due to local and abrupt changing of physical properties, and also stress wave propagation in stochastic-like domains are studied.

The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part.
First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of “isoparametric”, for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images.
Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids.
Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1
continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems.