### Refine

#### Keywords

- Finite-Differenzen-Methode (1)
- Mathematik (1)
- discrete function theory (1)
- elasticity (1)
- finite difference methods (1)
- geometry (1)
- harmonic (1)
- mathematics (1)
- p-Laplace equation (1)
- quaternion (1)

The p-Laplace equation is a nonlinear generalization of the well-known Laplace equation. It is often used as a model problem for special types of nonlinearities, and therefore it can be seen as a bridge between very general nonlinear equations and the linear Laplace equation, too. It appears in many problems for instance in the theory of non-Newtonian fluids and fluid dynamics or in rockfill dam problems, as well as in special problems of image restoration and image processing.
The aim of this thesis is to solve the p-Laplace equation for 1 < p < 2, as well as for 2 < p < 3 and to find strong solutions in the framework of Clifford analysis. The idea is to apply a hypercomplex integral operator and special function theoretic methods to transform the p-Laplace equation into a p-Dirac equation. We consider boundary value problems for the p-Laplace equation and transfer them to boundary value problems for a p-Dirac equation. These equations will be solved iteratively by applying Banach’s fixed-point principle. Applying operator-theoretical methods for the p-Dirac equation, the existence and uniqueness of solutions in certain Sobolev spaces will be proved.
In addition, using a finite difference approach on a uniform lattice in the plane, the fundamental solution of the Cauchy-Riemann operator and its adjoint based on the fundamental solution of the Laplacian will be calculated. Besides, we define gener- alized discrete Teodorescu transform operators, which are right-inverse to the discrete Cauchy-Riemann operator and its adjoint in the plane. Furthermore, a new formula for generalized discrete boundary operators (analogues of the Cauchy integral operator) will be considered. Based on these operators a new version of discrete Borel-Pompeiu formula is formulated and proved.
This is the basis for an operator calculus that will be applied to the numerical solution of the p-Dirac equation. Finally, numerical results will be presented showing advantages and problems of this approach.

This thesis applies the theory of \psi-hyperholomorphic functions dened in R^3 with values in the set of paravectors, which is identified with the Eucledian space R^3, to tackle some problems in theory and practice: geometric mapping properties, additive decompositions of harmonic functions and applications in the theory of linear elasticity.