Refine
Institute
Keywords
- Biogas (2)
- Biogasproduktion (1)
- Biomass (1)
- Biomass Technology (1)
- Biomasse (1)
- Biotechnologie (1)
- Brikettierung (1)
- Briquette Production (1)
- Briquetting (1)
- Developing Countries (1)
The construction and operation of a sanitary landfill (SLF) in the Philippines presents concerns on the regulation of the activities of the informal sector in the area. In anticipation of these directives, an association of informal waste reclaimers group called Uswag Calajunan Livelihood Association, Inc. (UCLA) was formed in May 2009. One option identified was the waste-to-energy activity through the production of fuel briquettes. With the availability of raw materials in the area, what was lacking then was an appropriate technology that would cater to their needs. This study, therefore, presented the case of UCLA on how socio-economic and technical aspects was integrated for the development and improvement of a briquetting technology needed in the production of quality briquettes as part of their income generating activities. A non-experimental posttest only design was utilized for the collection of descriptive information. Descriptions and discussions were also made on the enhancement of the briquetting machine from the first hand-press molder developed until the finalized design was attained.
Results revealed that the improved briquetting technology withstood the wear and tear of operation showing a significant (P<0.01) increase on the production rate (220 pcs/hr; 4 kg/hr) and bulk density (444.83 kg/m3) of briquettes produced. The quality of cylindrical briquettes produced in terms of bulk density, heating value (15.13 MJ/kg), moisture (6.2%), N and S closely met or has met the requirements of DIN 51731. Based on the operating expenses, the briquettes may be marked-up to Php0.25/pc (USD0.006) or Php15.00/kg (USD0.34) for profit generation. The potential daily earnings of Php130.00 (USD2.95) to Php288.56 (USD6.56) generated in producing briquettes are higher when compared to the majority of waste reclaimers’ daily income of Php124.00 (USD2.82). The high positive response (93%) on the usability of briquettes and the willingness of the respondents (81%) to buy them when sold in the market indicates its promising potential as fuel in the nearby communities. Results of briquette production citing the case of UCLA could be considered as potential source of income given the social, technical, economic and environmental feasibility of the experiment. This method of utilizing wastes in an urban setting of a developing country with similar socio-economic and physical set-ups may also be recommended for testing or replication.
In this study, the behavior of a widely graded soil prone to suffusion and necessity of homogeneity quantifi cation for such a soil in internal stability considerations are discussed. With the help of suffusion tests, the dependency of the particle washout to homogeneity of sample is shown. The validity of the great infl uence of homogeneity on suffusion processes by the presentation of arguments and evidences are established. It is emphasized that the internal stability of a widely graded soil cannot be directly correlated to the common geotechnical parameters such as dry density or permeability. The initiation and propagation of the suffusion processes are clearly a particle scale phenomenon, so the homogeneity of particle assemblies (micro-scale) has a decisive effect on particle rearrangement and washout processes. It is addressed that the guidelines for assessing internal stability lack a fundamental, scientifi c basis for quantifi cation of homogeneity. The observation of the segregation processes within the sample in an ascending layered order (for downwards fl ow) inspired the author to propose a new packing model for granular materials which are prone to internally instability.
It is shown that the particle arrangement, especially the arrangement of soil skeleton particles or the so-called primary fabric has the main role in suffusiv processes. Therefore, an experimental approach for identifi cation of the skeleton in the soil matrix is proposed. 3D models of Sequential Fill Tests using Discrete Element Method (DEM) and 3D models of granular packings for relative, stochastically and ideal homogeneous particle assemblies were generated, and simulations have been carried out.
Based on the numerical investigations and in dependency on the soil skeleton behavior, an approach for measurement of relevant scale, the so-called Representative Elementary Volume (REV) for homogeneity investigation is proposed. The development of a new testing method for quantifi cation of homogeneity is introduced (in-situ). An approach for quantifi cation of homogeneity in numerically or experimentally generated packings (samples) based on image processing method of MATLAB has been introduced. A generalized experimental method for assessment of internal stability for widely graded soils with dominant coarse matrix is developed, and a new suffusion criterion based on ideal homogeneous internally stable granular packing is designed.
My research emphasizes that in a widely graded soils with dominant coarse matrix, the soil fractions with diameters bigger than D60 build essentially the soil skeleton. The mass and spatial distribution of these fractions governs the internal stability, and the mass and distribution of the fi ll fractions are a secondary matter. For such a soil, the homogeneity of the skeleton must be cautiously measured and verified.
In the early 2000s the pre-Columbian, anthropologically produced black soil in the Amazon basin, „Terra Preta de Índio“, received greater scientific attention. Compared to the surrounding poor soils, this very fertile anthrosol contains significantly higher levels of microorganisms and nutrients. The reason for this was determined to be the likewise high levels of charred biomass. This stable carbon, now called biochar, has since been intensively examined as an option to improve soil and to store carbon.
Although the creation of Terra Preta was most likely based on a purposeful utilization of organic residues from households and gardens, biochar plays no role in the current recycling of bio-waste. However, the implementation of biochar could lead to many improvements. Results from agricultural research suggest that not only the yield capacity of soils can be increased but also the process performance of composting and biogas plants.
The latter is especially relevant since currently about 40% of all collected bio-waste in Germany is recycled in an energy-material cascade consisting of anaerobic digestion and composting. The use of biochar in this cascade could then sequentially increase biogas yields, reduce greenhouse gas emissions, and improve compost quality.
To realize the aforementioned advantages, the concept of biochar has to be integrated into the existing bio-waste cascade as practically as possible. This was done by the development of a theoretical scenario that allowed the analysis of energy and material flows to evaluate biochar’s recycling performance. Furthermore, the legal and economic framework were examined to assess the feasibility of the extended cascade and to suggest possible adjustments to the frameworks.
Marine Makroalgen besitzen vielversprechende Eigenschaften und Inhaltsstoffe für die Verwendung als Energieträger, Nahrungsmittel oder als Ausgangsstoff für Pharmazeutika. Dass die Quantität und Qualität der in natürlicher Umgebung wachsenden Makroalgen schwankt, reduziert jedoch deren Verwertbarkeit und erschwert die Erschließung hochpreisiger Marktsegmente. Zudem ist eine Ausweitung der Zucht in marinen und küstennahen Aquakulturen in Europa gegenwärtig wenig aussichtsreich, da vielversprechende Areale bereits zum Fischfang oder als Erholungs- bzw. Naturschutzgebiete ausgewiesen sind. Im Rahmen dieser Arbeit wird demzufolge ein geschlossenes Photobioreaktorsystem zur Makroalgenkultivierung entwickelt, welches eine umfassende Kontrolle der abiotischen Kultivierungsparameter und eine effektive Aufbereitung des Kulturmediums vorsieht, um eine standortunabhängige Algenproduktion zu ermöglichen. Zur Bilanzierung des Gesamtkonzeptes einer Kultivierung und Verwertung (stofflich oder energetisch) werden die spezifischen Wachstumsraten und Methanbildungspotentiale der Algenarten Ulva intestinalis, Fucus vesiculosus und Palmaria palmata in praktischen Versuchen ermittelt.
Im Ergebnis wird für den gegenwärtigen Entwicklungsstand der Kultivierungsanlage eine positive Bilanz für die stoffliche Verwertung der Algenart Ulva intestinalis und eine negative Bilanz für die energetische Verwertung aller untersuchten Algenarten erzielt. Wird ein Optimalszenario betrachtet, indem die Besatzdichten und Wachstumsraten der Algen in der Zucht erhöht werden, bleibt die Energiebilanz negativ. Allerdings summieren sich die finanzielle Einnahmen durch einen Verkauf der Algen als Produkt auf jährlich 460.869€ für Ulva intestinalis, 4.010€ für Fucus vesiculosus und 16.913€ für Palmaria palmata. Im Ergebnis ist insbesondere eine stoffliche Verwertung der gezüchteten Grünalge Ulva intestinalis anzustreben und die Produktivität der Zuchtanlage im Sinne des Optimalszenarios zu steigern.