Refine
Document Type
- Doctoral Thesis (3)
- Master's Thesis (2)
Institute
Keywords
- BIM (2)
- Bauantrag (2)
- Baugenehmigung (2)
- Building application (2)
- Decision-making (2)
- Entscheidungsmodell (2)
- IFC (2)
- Process management (2)
- Project management (2)
- Projektmanagement (2)
In conjunction with the improved methods of monitoring damage and degradation processes, the interest in reliability assessment of reinforced concrete bridges is increasing in recent years. Automated imagebased inspections of the structural surface provide valuable data to extract quantitative information about deteriorations, such as crack patterns. However, the knowledge gain results from processing this information in a structural context, i.e. relating the damage artifacts to building components. This way, transformation to structural analysis is enabled. This approach sets two further requirements: availability of structural bridge information and a standardized storage for interoperability with subsequent analysis tools. Since the involved large datasets are only efficiently processed in an automated manner, the implementation of the complete workflow from damage and building data to structural analysis is targeted in this work. First, domain concepts are derived from the back-end tasks: structural analysis, damage modeling, and life-cycle assessment. The common interoperability format, the Industry Foundation Class (IFC), and processes in these domains are further assessed. The need for usercontrolled interpretation steps is identified and the developed prototype thus allows interaction at subsequent model stages. The latter has the advantage that interpretation steps can be individually separated into either a structural analysis or a damage information model or a combination of both. This approach to damage information processing from the perspective of structural analysis is then validated in different case studies.
Die Auseinandersetzung mit der Digitalisierung ist in den letzten Jahren in den Medien, auf Konferenzen und in Ausschüssen der Bau- und Immobilienbranche angekommen. Während manche Bereiche Neuerungen hervorbringen und einige Akteure als Pioniere zu bezeichnen sind, weisen andere Themen noch Defizite hinsichtlich der digitalen Transformation auf. Zu dieser Kategorie kann auch das Baugenehmigungsverfahren gezählt werden. Unabhängig davon, wie Architekten und Ingenieure in den Planungsbüros auf innovative Methoden setzen, bleiben die Bauvorlagen bisher zuhauf in Papierform oder werden nach der elektronischen Einreichung in der Behörde ausgedruckt. Vorhandene Ressourcen, beispielsweise in Form eines Bauwerksinformationsmodells, die Unterstützung bei der Baugenehmigungsfeststellung bieten können, werden nicht ausgeschöpft. Um mit digitalen Werkzeugen eine Entscheidungshilfe für die Baugenehmigungsbehörden zu erarbeiten, ist es notwendig, den Ist-Zustand zu verstehen und Gegebenheiten zu hinterfragen, bevor eine Gesamtautomatisierung der innerbehördlichen Vorgänge als alleinige Lösung zu verfolgen ist.
Mit einer inhaltlich-organisatorischen Betrachtung der relevanten Bereiche, die Einfluss auf die Baugenehmigungsfeststellung nehmen, wird eine Optimierung des Baugenehmigungsverfahrens in den
Behörden angestrebt. Es werden die komplexen Bereiche, wie die Gesetzeslage, der Einsatz von Technologie aber auch die subjektiven Handlungsalternativen, ermittelt und strukturiert. Mit der Entwicklung eines Modells zur Feststellung der Baugenehmigungsfähigkeit wird sowohl ein Verständnis für Einflussfaktoren vermittelt als auch eine Transparenzsteigerung für alle Beteiligten geschaffen.
Neben einer internationalen Literaturrecherche diente eine empirische Studie als Untersuchungsmethode. Die empirische Studie wurde in Form von qualitativen Experteninterviews durchgeführt, um den Ist-Zustand im Bereich der Baugenehmigungsverfahren festzustellen. Das erhobene Datenmaterial wurde aufbereitet und anschließend einer softwaregestützten Inhaltsanalyse unterzogen. Die Ergebnisse wurden in Kombination mit den Erkenntnissen der Literaturrecherche in verschiedenen Analysen als Modellgrundlage aufgearbeitet.
Ergebnis der Untersuchung stellt ein Entscheidungsmodell dar, welches eine Lücke zwischen den gegenwärtigen
Abläufen in den Baubehörden und einer Gesamtautomatisierung der Baugenehmigungsprüfung schließt. Die prozessorientierte Strukturierung entscheidungsrelevanter Sachverhalte im Modell ermöglicht eine Unterstützung bei der Baugenehmigungsfeststellung für Prüfer und Antragsteller. Das theoretische Modell konnte in Form einer Webanwendung in die Praxis übertragen werden.
In recent years, the discussion of digitalization has arrived in the media, at conferences, and in committees of the construction and real estate industry. While some areas are producing innovations and some contributors can be described as pioneers, other topics still show deficits with regard to digital transformation. The building permit process can also be counted in this category. Regardless of how architects and engineers in planning offices rely on innovative methods, building documents have so far remained in paper form in too many cases, or are printed out after electronic submission to the authority. Existing resources – for example in the form of a building information model, which could provide support in the building permit process – are not being taken advantage of. In order to use digital tools to support decision-making by the building permit authorities, it is necessary to understand the current situation and to question conditions before pursuing the overall automation of internal authority processes as the sole solution.
With a substantive-organizational consideration of the relevant areas that influence building permit determination, an improvement of the building permit procedure within authorities is proposed. Complex areas – such as legal situations, the use of technology, as well as the subjective alternative action – are determined and structured. With the development of a model for the determination of building permitability, both an understanding of influencing factors is conveyed and an increase in transparency for all parties involved is created.
In addition to an international literature review, an empirical study served as the research method. The empirical study was conducted in the form of qualitative expert interviews in order to determine the current state in the field of building permit procedures. The collected data material was processed and subsequently subjected to a software-supported content analysis. The results were processed, in combination with findings from the literature review, in various analyses to form the basis for a proposed model.
The result of the study is a decision model that closes the gap between the current processes within the building authorities and an overall automation of the building permit review process. The model offers support to examiners and applicants in determining building permit eligibility, through its process-oriented structuring of decision-relevant facts. The theoretical model could be transferred into practice in the form of a web application.
Abstract In the first part of this research, the utilization of tuned mass dampers in the vibration control of tall buildings during earthquake excitations is studied. The main issues such as optimizing the parameters of the dampers and studying the effects of frequency content of the target earthquakes are addressed.
Abstract The non-dominated sorting genetic algorithm method is improved by upgrading generic operators, and is utilized to develop a framework for determining the optimum placement and parameters of dampers in tall buildings. A case study is presented in which the optimal placement and properties of dampers are determined for a model of a tall building under different earthquake excitations through computer simulations.
Abstract In the second part, a novel framework for the brain learning-based intelligent seismic control of smart structures is developed. In this approach, a deep neural network learns how to improve structural responses during earthquake excitations using feedback control.
Abstract Reinforcement learning method is improved and utilized to develop a framework for training the deep neural network as an intelligent controller. The efficiency of the developed framework is examined through two case studies including a single-degree-of-freedom system and a high-rise building under different earthquake excitation records.
Abstract The results show that the controller gradually develops an optimum control policy to reduce the vibrations of a structure under an earthquake excitation through a cyclical process of actions and observations.
Abstract It is shown that the controller efficiently improves the structural responses under new earthquake excitations for which it was not trained. Moreover, it is shown that the controller has a stable performance under uncertainties.
As machine vision-based inspection methods in the field of Structural Health Monitoring (SHM) continue to advance, the need for integrating resulting inspection and maintenance data into a centralised building information model for structures notably grows. Consequently, the modelling of found damages based on those images in a streamlined automated manner becomes increasingly important, not just for saving time and money spent on updating the model to include the latest information gathered through each inspection, but also to easily visualise them, provide all stakeholders involved with a comprehensive digital representation containing all the necessary information to fully understand the structure’s current condition, keep track of any progressing deterioration, estimate the reduced load bearing capacity of the damaged element in the model or simulate the propagation of cracks to make well-informed decisions interactively and facilitate maintenance actions that optimally extend the service life of the structure. Though significant progress has been recently made in information modelling of damages, the current devised methods for the geometrical modelling approach are cumbersome and time consuming to implement in a full-scale model. For crack damages, an approach for a feasible automated image-based modelling is proposed utilising neural networks, classical computer vision and computational geometry techniques with the aim of creating valid shapes to be introduced into the information model, including related semantic properties and attributes from inspection data (e.g., width, depth, length, date, etc.). The creation of such models opens the door for further possible uses ranging from more accurate structural analysis possibilities to simulation of damage propagation in model elements, estimating deterioration rates and allows for better documentation, data sharing, and realistic visualisation of damages in a 3D model.