### Refine

#### Institute

#### Keywords

It is well known that complex quaternion analysis plays an important role in the study of higher order boundary value problems of mathematical physics. Following the ideas given for real quaternion analysis, the paper deals with certain orthogonal decompositions of the complex quaternion Hilbert space into its subspaces of null solutions of Dirac type operator with an arbitrary complex potential. We then apply them to consider related boundary value problems, and to prove the existence and uniqueness as well as the explicit representation formulae of the underlying solutions.

The quaternionic operator calculus can be applied very elegantly to solve many important boundary value problems arising in fluid dynamics and electrodynamics in an analytic way. In order to set up fully explicit solutions. In order to apply the quaternionic operator calculus to solve these types of boundary value problems fully explicitly, one has to evaluate two types of integral operators: the Teodorescu operator and the quaternionic Bergman projector. While the integral kernel of the Teodorescu transform is universal for all domains, the kernel function of the Bergman projector, called the Bergman kernel, depends on the geometry of the domain. Recently the theory of quaternionic holomorphic multiperiodic functions and automorphic forms provided new impulses to set up explicit representation formulas for large classes of hyperbolic polyhedron type domains. These include block shaped domains, wedge shaped domains (with or without additional rectangular restrictions) and circular symmetric finite and infinite cylinders as particular subcases. In this talk we want to give an overview over the recent developments in this direction.