• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Document Type

  • Article (1)
  • Conference Proceeding (1)

Author

  • Könke, Carsten (2)
  • Ansari, Meisam (1)
  • Eckardt, Stefan (1)
  • Häfner, Stefan (1)
  • Zacharias, Christin (1)

Institute

  • Professur Baustatik und Bauteilfestigkeit (1)
  • Professur Informatik im Bauwesen (1)

Keywords

  • Beton (2) (remove)

Year of publication

  • 2003 (1)
  • 2023 (1)

2 search hits

  • 1 to 2
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales (2003)
Häfner, Stefan ; Eckardt, Stefan ; Könke, Carsten
This paper introduces a method to generate adequate inclusion-matrix geometries of concrete in two and three dimensions, which are independent of any specific numerical discretization. The article starts with an analysis on shapes of natural aggregates and discusses corresponding mathematical realizations. As a first prototype a two-dimensional generation of a mesoscale model is introduced. Particle size distribution functions are analysed and prepared for simulating an adequate three-dimensional representation of the aggregates within a concrete structure. A sample geometry of a three-dimensional test cube is generated and the finite element analysis of its heterogeneous geometry by a uniform mesh is presented. Concluding, aspects of a multiscale analysis are discussed and possible enhancements are proposed.
Metaconcrete: An Experimental Study on the Impact of the Core-Coating Inclusions on Mechanical Vibration (2023)
Ansari, Meisam ; Zacharias, Christin ; Könke, Carsten
Resonance vibration of structures is an unpleasant incident that can be conventionally avoided by using a Tuned Mass Damper (TMD). The scope of this paper contains the utilization of engineered inclusions in concrete as damping aggregates to suppress resonance vibration similar to a TMD. The inclusions are composed of a stainless-steel core with a spherical shape coated with silicone. This configuration has been the subject of several studies and it is best known as Metaconcrete. This paper presents the procedure of a free vibration test conducted with two small-scaled concrete beams. The beams exhibited a higher damping ratio after the core-coating element was secured to them. Subsequently, two meso-models of small-scaled beams were created: one representing conventional concrete and the other representing concrete with the core-coating inclusions. The frequency response curves of the models were obtained. The change in the response peak verified the ability of the inclusions to suppress the resonance vibration. This study concludes that the core-coating inclusions can be utilized in concrete as damping aggregates.
  • 1 to 2
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018